Volume 9, Issue 3 (Aug 2021)                   Res Mol Med (RMM) 2021, 9(3): 173-180 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dastyar M, Eizadi M, Roozbayani M. The Effect of Resistance Training on PI3K/mTORc1 Signaling in Left Ventricle of Diabetic Rats. Res Mol Med (RMM) 2021; 9 (3) :173-180
URL: http://rmm.mazums.ac.ir/article-1-435-en.html
1- Department of Exercise physiology, Borujerd Branch, Islamic Azad University, Borujerd, Iran
2- Department of Exercise Physiology, Saveh Branch, Islamic Azad University, Saveh, Iran , izadimojtaba2006@yahoo.com
Abstract:   (1598 Views)
Background: Clinical evidence supports the influential role of genetic factors and intracellular signaling pathways in physiological cardiac hypertrophy. This study aimed to assess the response of the PI3K/mTORc1 signaling pathway in cardiac tissue to resistance training in obese rats with Type 2 Diabetes (T2D).
Materials and Methods: A total of 21 male Wistar rats (Mean±SD weight: 220±20 g) were obese by 6 weeks High-Fat Diet (HFD) and randomly assigned to 1) non-diabetic, 2) control T2D, and 3) exercise diabetic groups. T2D was induced by intraperitoneal injection of streptozotocin (30 mg/kg) for diabetic groups. The exercise group did the resistance exercise program (5 times per week for 6 weeks). After exercise training, PI3K and mTORc1 expression in the left ventricle and the ratio of the left ventricle to heart and heart to body weight were compared between groups. The obtained data were compared by 1-way Analysis of Variance (ANOVA) (P<0.05).
Results: Induction of diabetes resulted in significant decrease in all mentioned variables in control diabetic to non-diabetic rats (PI3K; P=0.021, mTORc1; P=0.004, left ventricle/heart weight; P=0.045, heart/body weight; P=0.035). Significant increase was observed in all variables (PI3K; P=0.028, mTORc1; P=0.015, left ventricular/heart weight; P=0.002, heart/body weight; P=0.001) in response to resistance training compared to the control rat.
Conclusion: Based on our results, cardiac hypertrophy in studied diabetic rats can be attributed to improved PI3K/mTORc1 signaling in response to resistance training. Exploring the exact mechanisms responsible for these changes in response to exercise requires further molecular-cellular studies.
Full-Text [PDF 776 kb]   (597 Downloads)    
Type of Study: Research | Subject: Physical Medicine and Rehabilitation
Published: 2021/08/20

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Designed & Developed by : Yektaweb