Volume 5, Issue 2 (May 2017)                   Res Mol Med (RMM) 2017, 5(2): 9-13 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khanaki K, Abedinzade M, Gazor R, Norasfard M, Jafari-Shakib R. Effect of Lamium Album on Mitochondrial Oxidative Stress in Diabetic Rats. Res Mol Med (RMM). 2017; 5 (2) :9-13
1- Department of Clinical Biochemistry, Medical Biotechnology Research Center, Faculty of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
2- Department of Physiology, Medical Biotechnology Research Center, Faculty of Paramedical Sciences, Guilan University of Medical Science, Rasht, Iran
3- Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
4- Department of Physiology, Faculty of Medicine, Guilan University of Medical Science, Rasht, Iran
5- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran ,
Abstract:   (4117 Views)

Background: Diabetes mellitus (DM) is characterized by the presence of hyperglycemia. It has been documented that oxidative stress and reactive oxygen species (ROS) production have a key role in the pathogenesis of diabetes and its complications. Neutrophils as a part of immune system produce ROS, neutrophils function might be altered in diabetes. Lamium album is known to have antioxidant, and free radical scavenging actions. The aim of the present study was to evaluate the potential effect of L. album on mitochondrial ROS production from circulating neutrophils in diabetic rats.
Materials and Methods: Twenty-one male Wistar rats were randomly divided into three groups: normal control rats receiving daily saline; diabetic control rats receiving daily saline; and diabetic rats treated daily with hydroalcoholic extract of L. album (100 mg/kg) for 28 days. On the 28thday of treatment, whole blood samples were obtained and mitochondrial ROS of neutrophils were measured by dihydrorhodamine (DHR) flow cytometric method. Also, fasting blood sugar (FBS) was measured.
Results: Mitochondrial ROS didn’t show any significant differences among diabetic rats treated with L. album extract, diabetic control rats, and normal control rats (P=0.8). Serum glucose in diabetic control was significantly higher than normal control rats (P=0.0001). However, L. album caused a remarkable decrease in serum glucose of diabetic rats (P=0.03).
Conclusion: According to the present findings, it seems that L. album at a dose of 100 mg/kg could not decrease mitochondrial ROS production from neutrophils in diabetic rats. Further studies considering higher concentrations of L. album are appreciated to evaluate its impact on the production of mitochondrial ROS along with extracellular ROS in diabetes condition.

Full-Text [PDF 349 kb]   (1072 Downloads)    
Type of Study: Research | Subject: Immunology
Received: 2017/06/27 | Accepted: 2017/09/5 | Published: 2017/09/5

1. Maitra A, Abbas AK. The endocrine system. Robbins and Cotran Pathologic basis of disease. Philadelphia: ElsevierSaunders. 2005; 8:1107-26.
2. Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem. 2004; 279(41):42351-4. PMID: 15258147 [DOI:10.1074/jbc.R400019200]
3. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes care. 2004; 27(5):1047-53. PMID: 15111519 [DOI:10.2337/diacare.27.5.1047]
4. Yach D, Hawkes C, Gould CL, Hofman KJ. The global burden of chronic diseases: overcoming impediments to prevention and control. JAMA. 2004; 291(21):2616-22. PMID: 15173153 [DOI:10.1001/jama.291.21.2616]
5. van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011; 91(1):79-118. PMID: 21248163 [DOI:10.1152/physrev.00003.2010]
6. Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, et al. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal. 2007; 9(3):355-66. PMID: 17184181 [DOI:10.1089/ars.2006.1465]
7. Kedziora-Kornatowska K, Szewczyk-Golec K, Kozakiewicz M, Pawluk H, Czuczejko J, Kornatowski T, et al. Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients. J Pineal Res. 2009; 46(3):333-7. PMID: 9317795 [DOI:10.1111/j.1600-079X.2009.00666.x]
8. Pavana P, Sethupathy S, Manoharan S. Antihyperglycemic and antilipidperoxidative effects ofTephrosia purpurea seed extract in streptozotocin induced diabetic rats. Indian J Clin Biochem. 2007; 22(1):77-83. PMID: 23105657 [DOI:10.1007/BF02912886]
9. Gallou G, Ruelland A, Legras B, Maugendre D, Allannic H, Cloarec L. Plasma malondialdehyde in type 1 and type 2 diabetic patients. Clin Chim Acta. 1993; 214(2):227-34. PMID: 8472388 [DOI:10.1016/0009-8981(93)90114-J]
10. Kim HK, Kim MJ, Cho HY, Kim EK, Shin DH. Antioxidative and anti-diabetic effects of amaranth (Amaranthus esculantus) in streptozotocin-induced diabetic rats. Cell Biochem Funct. 2006; 24(3):195-9. PMID: 16634092 [DOI:10.1002/cbf.1210]
11. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002; 51(1):7-18. PMID: 11756317 [DOI:10.2337/diabetes.51.1.7]
12. Nishikawa T, Araki E. Mechanism-based antioxidant therapies promise to prevent diabetic complications? J Diabetes Investig. 2013; 4(2):105-7. PMID: 24843640 [DOI:10.1111/jdi.12041]
13. Poitout V, Robertson RP. Minireview: Secondary beta-cell failure in type 2 diabetes--a convergence of glucotoxicity and lipotoxicity. Endocrinology. 2002; 143(2):339-42. PMID: 11796484 [DOI:10.1210/endo.143.2.8623]
14. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 2003; 278(10):8516-25. PMID: 12496265 [DOI:10.1074/jbc.M210432200]
15. Marin DP, Bolin AP, Macedo Rde C, Sampaio SC, Otton R. ROS production in neutrophils from alloxan-induced diabetic rats treated in vivo with astaxanthin. Int Immunopharmacol. 2011; 11(1):103-9. PMID: 21055504 [DOI:10.1016/j.intimp.2010.10.013]
16. Rossoni-Junior JV, Araujo GR, Padua Bda C, Chaves MM, Pedrosa ML, Silva ME, et al. Annato extract and beta-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats. J Clin Biochem Nutr. 2012; 50(3):177-83. PMID: 22573917 [DOI:10.3164/jcbn.11-49]
17. Meghana K, Sanjeev G, Ramesh B. Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: a prophylactic and protective role. Eur J Pharmacol. 2007; 577(1-3):183-91. PMID: 17900558 [DOI:10.1016/j.ejphar.2007.09.002]
18. Kim EK, Kwon KB, Song MY, Seo SW, Park SJ, Ka SO, et al. Genistein protects pancreatic beta cells against cytokine-mediated toxicity. Mol Cell Endocrinol. 2007; 278(1-2):18-28. PMID: 17881116 [DOI:10.1016/j.mce.2007.08.003]
19. Matkowski A, Piotrowska M. Antioxidant and free radical scavenging activities of some medicinal plants from the Lamiaceae. Fitoterapia. 2006; 77(5):346-53. PMID: 16713687 [DOI:10.1016/j.fitote.2006.04.004]
20. Paduch R, Matysik G, Wójciak-Kosior M, Kandefer-Szerszen M, Skalska-Kaminska A, Nowak-Kryska M, et al. Lamium album extracts express free radical scavenging and cytotoxic activities. Pol J Environ Stud. 2008; 17(4):569-80.
21. YALÇIN FN, Kaya D, Çaliş İ, Ersoez T, Palaska E. Determination of iridoid glycosides from four Turkish Lamium species by HPLC-ESI/MS. Turk J Chem. 2008;32(4):457-67.
22. Yalçın FN, Kaya D, Kılıç E, Özalp M, Ersöz T, Çalış İ. Antimicrobial and free radical scavenging activities of some Lamium species from Turkey. Hacettepe Univ Fac Pharm. 2007:27,111-22.
23. Lee JJ, Yi HY, Yang JW, Shin JS, Kwon JH, Kim CW. Characterization of streptozotocin-induced diabetic rats and pharmacodynamics of insulin formulations. Biosci Biotechnol Biochem. 2003; 67(11):2396-401. PMID: 14646199 [DOI:10.1271/bbb.67.2396]
24. Mehran MM, Norasfard MR, Abedinzade M, Khanaki K. Lamium album or Urtica dioica?Which is more effective in decreasing serum glucose, lipid and hepatic enzymes in streptozotocin induced diabetic rats: a comparative study. Afr J Tradit Complement Altern Med. 2015; 12(5).
25. Wolfe K, Wu X, Liu RH. Antioxidant activity of apple peels. J Agric Food Chem. 2003; 51(3):609-14. PMID: 12537430 [DOI:10.1021/jf020782a]
26. Ordonez A, Gomez J, Vattuone M. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food chem. 2006; 97(3):452-8. [DOI:10.1016/j.foodchem.2005.05.024]
27. Basha MP, Saumya S. Influence of fluoride on streptozotocin induced diabetic nephrotoxicity in mice: Protective role of Asian ginseng (Panax ginseng) & banaba (Lagerstroemia speciosa) on mitochondrial oxidative stress. Indian J Med Res. 2013; 137(2):370. PMID: 23563382
28. Sellamuthu PS, Arulselvan P, Kamalraj S, Fakurazi S, Kandasamy M. Protective nature of mangiferin on oxidative stress and antioxidant status in tissues of streptozotocin-induced diabetic rats. ISRN Pharmacol. 2013; 2013:750109. PMID: 24167738
29. Rose NR, Conway de Macario E, Folds JD, Lane HC, Nakamura RM(ed). Manual of Clinical Laboratory Immunology, 5th ed. Washington, DC: ASM Press; 1997. 861-2.
30. Guerra JF, Magalhaes CL, Costa DC, Silva ME, Pedrosa ML. Dietary acai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats. J Clin Biochem Nutr. 2011; 49(3):188-94. PMID: 22128218 [DOI:10.3164/jcbn.11-02]
31. Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem. 2005; 16(10):577-86. PMID: 16111877 [DOI:10.1016/j.jnutbio.2005.05.013]
32. Rinaldi M, Moroni P, Paape MJ, Bannerman DD. Evaluation of assays for the measurement of bovine neutrophil reactive oxygen species. Vet Immunol Immunopathol. 2007; 115(1-2):107-25. PMID: 17067684 [DOI:10.1016/j.vetimm.2006.09.009]
33. Fay AJ, Qian X, Jan YN, Jan LY. SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes. Proc Natl Acad Sci U S A. 2006; 103(46):17548-53. PMID: 17085590 [DOI:10.1073/pnas.0607914103]
34. Nakanishi S, Suzuki G, Kusunoki Y, Yamane K, Egusa G, Kohno N. Increasing of oxidative stress from mitochondria in type 2 diabetic patients. Diabetes Metab Res Rev. 2004; 20(5):399-404. PMID: 15343586 [DOI:10.1002/dmrr.469]
35. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000; 49(11):1939-45. PMID: 11078463 [DOI:10.2337/diabetes.49.11.1939]
36. Tuttle KR, Anderberg RJ, Cooney SK, Meek RL. Oxidative stress mediates protein kinase C activation and advanced glycation end product formation in a mesangial cell model of diabetes and high protein diet. Am J Nephrol. 2009; 29(3):171-80. PMID: 18781061 [DOI:10.1159/000154470]
37. Pereira OR, Macias RI, Perez MJ, Marin JJ, Cardoso SM. Protective effects of phenolic constituents from Cytisus multiflorus, Lamium album L. and Thymus citriodorus on liver cells. J Funct Foods. 2013; 5(3):1170-9. [DOI:10.1016/j.jff.2013.03.014]
38. Gabriel H, Schwarz L, Born P, Kindermann W. Differential mobilization of leucocyte and lymphocyte subpopulations into the circulation during endurance exercise. Eur J Appl Physiol Occup Physiol .1992; 65(6):529-34. PMID: 1483441 [DOI:10.1007/BF00602360]
39. McCarthy DA, Macdonald I, Grant M, Marbut M, Watling M, Nicholson S, et al. Studies on the immediate and delayed leucocytosis elicited by brief (30-min) strenuous exercise. Eur J Appl Physiol Occup Physiol. 1992; 64(6):513-7. PMID: 1618188 [DOI:10.1007/BF00843760]

Add your comments about this article : Your username or Email:

© 2021 CC BY-NC 4.0 | Research in Molecular Medicine

Designed & Developed by : Yektaweb