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Abstract 

Inflammatory condition is the consequence of defensive mechanism of immune 

system against viral and bacterial infection, tissue injury, UV radiation, stress and 

etc. Persistently acute inflammation leads to chronic phase which is characterized 

by production of pro-inflammatory mediators from T cells. These molecules (e.g. 

IL-6, TNF-α, IL-1β and IL-17) are mostly pleiotropic cytokines involved in 

multiple signaling cascades. NF-κB, STAT3, and HIF-1α are the major engaged 

pathways directing to several downstream targets associating with tumorigenesis 

and inflammation. Carcinogenesis processes such as DNA mutation/damage, 

proliferation, angiogenesis, apoptosis, and invasion are implicated to 

inflammation. Clearly there is a closely association between cancer and 

inflammation reported as “Seven Hallmark of Cancer”. The elucidation of 

relationship between inflammation and cancer and their interaction may result in 

effective therapy and prevention. Gastric cancer is one of the main cancer 

involved in complex correlation of inflammation and cancer. Inflammation in 

gastric epithelium could trigger cellular transformation and promote invasion by 

inducing immune responses and utilizing signaling cascades. Gastric tumor 

microenvironment has inverse association by providing cytokines and 

inflammatory mediators. This closely relationship facilitates gastric tumor 

development and the induction of chronic inflammation in tumor 

microenvironment. The current review will focus on describing the possible and 

critical ways in which inflammation and cancer are linked together with specific 

view to gastric cancer and inflammation. Finally, it introduces some putative 

treatment generally used in this way in order to direct more attention for further 

exploration.  
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Introduction  

The first association between inflammation and 

cancer came back to 1828 when a French surgeon 

Jean Nickolas Marjolin described the occurrence of 

squamous carcinoma in a post-traumatic chronically 

inflamed wound. In 1863, Dr Rudolf Virchow 

observed leukocytes in neoplastic tissues. He 

supposed that cancer was originated at the sites of 

chronic inflammation. These were the first step that 

provides evidences of possible relationship between 

Inflammation and cancer (1). Epidemiological data  

 

 

 

 

 

 

proved that over 25% of all cancers are associated 

with chronic infection and other types of 

inflammation (2). For example, it is suggested that 

chronic inflammation in prostate plays a key role in 

initiation and promotion of prostate cancer (3). 

Another study estimated that prostatitis has 

approximately 14% increase in the risk of prostate 

cancer (4). Colorectal cancer is associated with both 

ulcerative colitis and Crohn’s disease; such patients 

have a higher risk of colorectal cancer than normal 
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people without inflammatory bowel diseases (IBDs) 

(5). During liver inflammation, liver cells initiate 

growth and repair that are necessary for normal 

recovery of liver cells. Chronic inflammation is able 

to imbalance liver cells regeneration and replacement 

which led to disruption of hepatic structure and 

function. Long-term inflammation may progress to 

fibrosis, cirrhosis, and cancer. Hepatitis B (HBV) and 

hepatitis C (HCV) viruses are found in 75% of all 

patients with hepatocellular carcinoma (HCC) (6). 

Chronic pancreatitis increases 10- 20- fold in the risk 

for pancreatic cancer development; this progression is 

due to chronic inflammatory process including 

stroma formation (7). Consistent results came from 

study that showed H .pylori-induced chronic gastritis 

has an important role in development of gastric 

cancer (8). Herein, we will focus on the main routes 

and mechanisms linking inflammation and cancer as 

well as point evidences supporting interaction 

between gastric inflammation and cancer. Finally, we 

will investigate the therapeutic effects of knowledge 

in the field of gastric inflammation-cancer connection 

in order to provide novel insight toward achieve the 

efficient treatments.   

 

Cancer and Inflammation 

Cancer and inflammation are linking to each other via 

two pathways; intrinsic and extrinsic. Inflammatory 

conditions such as secreting chemokines and 

cytokines increase cancer risk during extrinsic 

pathway while genetic alterations like activation 

proto-oncogene, inactivation tumor suppressor gene, 

and chromosomal instability participate in intrinsic 

pathway (9) (Figure 1).   

 

Inflammation: From acute to chronic phase 

The word inflammation is derived from Latin word of 

“inflammare” that means to set on fire (10). The 

inflammation is a non-specific complex of process 

coordinated response of tissues to injury. 

Inflammation process contains vascular permeability, 

active migration of blood cells and transmission of 

plasma constituents into inflamed tissues (11). 

Inflammation is divided into acute and chronic 

subgroups. Acute inflammation is the initial immune 

response that occurs in the first few hours following 

damage. This phase is characterized by increasing in 

blood flow though vasodilatation induces structural 

changes in the microvasculature and resulted in 

vascular permeability in which plasma fluid and 

proteins and leukocytes leave the circulation, 

leukocytes and inflammatory cytokines migrate from 

the microcirculation and are accumulated in the site 

of injury (12). Neutrophils are the most important 

leukocytes that migrate to injured state (13). 

Cytokines such as IL-1, TNF-α and IL-6 are 

associated with acute phase of inflammation (14). 

This short time systemic response has potential 

therapeutic effects, if inflammation lasts too long 

may lead to chronic phase (15). Chronic response is a 

dysregulated form of inflammation that localized in 

tissues. Both special humoral and cellular immune 

responses are developed during this phase. Different 

types of pro-inflammatory mediators are released 

and/or generated during chronic inflammation such as 

IL-4, IL-5, IL-6, IL-7, and IL-13 that mediating 

humoral responses and those mediating cellular 

responses; IL-1, IL-2, IL-3, IL-4, IL-7, IL-9, IL-10, 

and IL-12 (16). Persistence of chronic inflammation 

is involved in development of wide variety of 

diseases such as cardiovascular disease, diabetes, 

Alzheimer disease, arthritis, autoimmune diseases, 

and cancers (17). Gastritis is a group of inflammatory 

condition occurring in stomach lining caused by 

Helicobacter pylori infection, smoking, alcohol 

consumption, viruses, and etc. H. Pylori and Ebstein 

Barr virus (EBV) were detected in 75% (18) and 10% 

of gastric cancer, respectively (19). H. pylori are able 

to stimulate immune responses through macrophage 

activation. TNF-α induced in this way initiates Wnt 
signaling pathway contributing to gastric carcinogenesis 
(20). Chronic gastritis caused by H. pylori enhances 

IL-8 and neutrophils infiltration (21). IL-8 is the main 

cytokine expressed during acute phase in response to 

H. pylori infection and up-regulated in chronic phase. 

IL-8 contributes in apoptosis, proliferation, growth, 

and vascolarization in gastric tumors (22). IL-8 and 

Groα are key molecules in neutrophils attraction and 

transition from gastric mucosal vessels to local 

inflammatory sites in epithelium (23). The great 

direct relationship between H. pylori infection, 

neutrophils activation, chronic gastritis, and intestinal 

metaplasia stage is confirmed in Tanko et al study 

(24). In addition to generation of several chemokines 

by neutrophils, they induces oxidative damage to 

gastric mucosa by production of reactive oxygen 

specious (ROS). Thus H. pylori causes persistent and 

localized inflammation (25). There are polymorphisms 

in iNOS gene in patients with H. pylori infection that 

create a great risk for developing gastric cancer (26). 

H. pylori infection is associated with increased 

production of proinflammatory cytokines such as 

TNF-α, IL-1β, IL-6, IL-8, and IL-12. The secretion of 

proinflammatory cytokines during chronic gastritis 

and peptic ulcers may lead to gastric cancer (27). 

These are confirmatory evidences that prove 

inflammation participate in cytokines production and 

cancer development. Taken together, inflammation is 

characterized by infiltration of immune cells such as 

macrophages, lymphocytes, and plasma cells that 

lead to tissue damage, fibrosis, and angiogenesis (28). 

On the other hand, proinflammatory molecules such 
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as cytokines, iNOS, ROS, NF-κB are increased (29). 

These molecules trigger pathways in which 

transcription factors and inflammatory mediators are 

transcribed. These transcription factors initiate 

carcinogenic processes containing: proliferation, 

apoptosis, angiogenesis, invasion, and metastasis. 

Thus inflammation promotes cancer progression by 

provide compounds that induce mutations and proper 

microenvironment for tumor growth (Figure 1).  

 

Cancer   

Cancer is an abnormal cellular behavior in which 

normal cells continue to their unlimited proliferation 

and spread to distant location of the body during a 

process called metastasis (30). Although proliferation 

is the perquisite step in embryogenesis, tissue 

functions and also tumorigenesis, cancer cells escape 

from normal homeostatic growth control. This is the 

consequence of loss of tumor suppressive ability and 

gain oncogenic properties (31). Oncogenes are 

activated form of normal cellular gene called “proto-

oncogene” derived from genetic damages direct 

normal cells toward transformation and malignancies 

(32). K-ras is one of oncogenes expressed in 

cancerous tissues such as gastric epithelium. 

Oncogenic mutations in K-ras may lead to promote 

chronic inflammation by production of cytokines and 

soluble mediators. Furthermore, it is found that 

mutant K-ras can induce Helicobacter felis infection 

in gastric epithelium and resulted in chronic 

inflammation. Helicobacter-related infection would 

play an important role in gastric cancer development 

from normal epithelium to advanced form. Thus K-

ras oncogenic mutations could progress gastric cancer 

by Helicobacter-induced infection (33). It is 

demonstrated that Ras oncogenes are able to secrete 

CXCl-8/IL-8 which is critical factor in inflammation 

and neovascularization (34) especially in gastric 

cancer as implies before. N-myc downstream-

regulated gene 1 (NDRG1) is overexpressed in gastric 

cancer with a poor prognosis. NDRG1 significantly 

increases angiogenesis and metastasis of gastric 

tumors through IL-1 secretion in JNK/AP1-

dependent pathway. It also induces angiogenic CXC 

chemokines in gastric cancer cells (35). These 

evidences confirmed the possible role of oncogene-

derived inflammatory cytokines in several process of 

tumorigenesis. The accumulation of mutation/ 

alteration in these genes resulted in cancer 

development during multi step process of 

carcinogenesis. Carcinogenesis processes including 

DNA damage, DNA synthesis, destruction in repair 

pathway, apoptosis inhibition, and angiogenesis 

promotion are associated with chronic inflammation 

(36). 

 

Inflammatory cells in cancer development 

Macrophages and T cells are the main part of 

immune response that are the most frequently cells 

found in tumor microenvironment (37). Macrophages 

are one of the main immune cells that take part in 

initiation, maintenance, and resolution of inflammation. 

They produce a wide range of cytokines (38). 

Macrophages differentiate into two subtypes named 

M1 which classically activated and M2 activated 

alternatively. Tumor-associated macrophages (TAMs) 

represent M2 phenotype with high content and poor 

prognosis in tumors (39). TAMs are the major 

components of inflammation that has a duel role in 

tumorigenesis. Besides its role in killing tumor 

tissues, they produce IL-10 (40), IL-1, prostaglandin 

E2, urokinase-type plasminogen activator (41), and 

also express VEGF (42). Moreover, they can secrete 

growth factors such as PDGF, TGF-β and members 

of FGF family that act as pro-ongiogenic mediators in 

different cancers (43). TAMs are capable of 

degrading extra cellular matrix and facilitate tumor 

migration, metastasis and stimulate angiogenesis by 

secreting matrix metaloprotease 2 (MMP-2), MMP-7, 

MMP-9, MMP-10, and cyclooxygenase-2 (44-46). In 

addition TAMs connect inflammation to cancer by 

induction TNF-α and iNOS. The importance of TAM 

in gastric tumor development makes a close 

relationship between TAM infiltration determines 

tumor cells invasion and metastasis and also the 

clinical grade and stage of gastric cancer (47). 

T lymphocytes are divided into two groups on the 

basis of their receptors: γδ and αβ (48). αβ T cells 

generally express CD8
+
 (CTL) or CD4

+
 helper (Th) 

cells (49) including Th1, Th2, Th17, and  regulatory 

T (T reg) (50). The presence of increased number of 

T lymphocyte subsets in different cancers demonstrated 

the relationship between immune cells and cancers. 

Many studies proved the possible relationship 

between CD4
+
 and CD8

+
 and different types of 

cancers such as skin, renal, colorectal cancer, and 

Hodgkin’s lymphoma (51-54). T lymphocytes subsets 

are able to produce different cytokines such as IL-2, 

IL-4, IL-6, IL-10, TNF-α, IFN-γ, COX-1, and COX-2 

associating with malignant diseases (55). Different 

human and animal model studies revealed that CD4
+ 

T cells are the main part of the immune cells 

infiltrating during H. pylori-induced chronic gastritis 

(56). Obviously long-term exposure to H. pylori and 

persistent immune response develop inflammation to 

invasive phase. Regulatory T cells (Treg) is a part of 

CD4
+
 T cells that is involved in regulation of immune 

response, self tolerance, immune homeostasis, and 

different allergic, infectious diseases and cancers (57). 

Treg cells (CD4
+
CD25

+
FOXP3

+
T cells) are known as 

immunosuppressor of tumor cells caused tumor 

growth and development and cancer treatment failure. 
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Tumor cells may activate Treg cells (tumor Treg 

cells) in tumor microenvironment which destruct 

immunity against cancer. Tumor-generated TGF-β 

increases the growth and proliferation of Treg and 

leads to its differentiation from naïve CD4
+
CD25-T 

cells. In addition other co-stimulators such as 

CD80/CD86 or CD70 are expressed for conversion of 

naïve T cells into Treg. Tumor Treg prevent NK 

cells, CD4
+
, and CD8

+
 T cells in order to promote 

tumorigenesis. High level of Treg was reported in 

different types of cancers such as lung, ovarian, 

colon, and gastric (58). Increased CD4
+
CD25

+
 T cells 

are correlated with poor prognosis of gastric cancer. 

This level is reduced after effective treatment (59). 

The level of CD4
+
CD25

+
 T cells was associated to 

severity of gastric carcinogenesis (60). This not only 

confirms the role of Treg cells in gastric carcinoma 

but also shows the direct relationship of Treg levels 

with gastric stages. Another study investigated the 

role of H. pylori infection in gastric cancer 

promotion, H. pylori persistence is formed as the 

result of gastric inflammation and its-relating 

immune response. On the other hand, regulatory 

immune cells such as Treg cells are involved in 

immune responses and bacterial infection (61). 

Neutrophils are group of inflammatory initiator 

leukocytes that migrate to sites of inflammation. 

Their role in cytokine and chemikone production 

intensifies humoral immune response (62) and 

promotes inflammation. Furthermore, in tumor 

microenvironment several types of chemokines and 

cytokines are secreted by tumor cells that attract 

neutrophils and other leukocytes (63). These tumor 

associated-neutrophils (TANs) are the main parts of 

leukocytes recruited in cancer (64). Patients, who 

affected to metastatic form of cancer, reveal high 

levels of neutrophils in their peripheral blood (65). 

The main mechanisms of neutrophils participation in 

tumorigenesis are included secreting cytokines and 

chemokines (IL-6, IL-1β, TNF-α, IL-12), inducing 

genotoxicity by producing ROS, generation of 

basement membrane-degrading proteinases and 

facilitating tumor invasion and metastasis, activation 

of neutrophil-derived MMP-9 that is accommodated 

in a special secondary granules, and production of 

neutrophil elastase (66). An Elastolytic enzyme leads 

to un-controllable proliferation and tumor growth. It 

is found that there is an association between H. pylori 

localization and increased neutrophils transition and 

infiltration (67).  

Mast cells are one of the key immune cells associated 

with tumor-related inflammation. Besides their role 

in regulation of tumor inflammation and autoimmune 

diseases, they act as tumor promoting cells by 

releasing stimulatory mediators (68). Regarding the 

fact that inflammation plays a key role in tumor 

initiation, promotion and invasion, mast cell 

transition to tumor may increase tumor cells growth. 

Stem cell factor (SCF) and its receptor (c-Kit) 

expressed on mast cells take part in mast cell 

differentiation, migration, maturation, and activation. 

Activated mast cells are able to secrete various 

proinflammatory molecules and overexpression of 

IL-17 in tumor cells. This form of mast cells 

implicated in tumor microenvironment remodeling, 

enhancing NF-κB and AP-1 activities and inhibits T 

and NK cells (69). There is a close association 

between angiogenesis, mast cell numbers and gastric 

tumor growth. Mast cells are one of the immune cells 

that secrete proangiogenic molecules and enhance 

neovascularization. Mukheriee et al showed that mast 

cells density in benign gastric tumor is higher than 

controls. Moreover, mast cells increase in well-

differentiated gastric cancer compared with less-

invasive form (70). VEGF is a growth factor 

participating in angiogenesis especially in gastric 

cancer. VEGF and its receptor (VEGFR-2) are highly 

expressed in gastric tumor cells (71). Thus mast cells 

play an important role in gastric tumor metastasis and 

invasion by producing VEGF and preparing new 

vessels.  

 

Signaling Pathway 

NF-κB 

Nuclear Factor-κB is the most important factor 

linking inflammation to cancer. This dimeric 

transcription factor exists in cytoplasm in its 

inactivation form along with IκB as inhibitor (72). 

Stimulation such as cytokines lead to IκB 

phosphorylation, remove its inhibitory effect and 

resulted in NF-κB nuclear localization (73); therefore 

NF-κB trigger its downstream signaling pathway 

including immune-mediating genes and inflammatory 

genes, anti-apoptotic genes, cell proliferation 

regulating genes, and genes encoding negative 

regulators of NF-κB (74). Majority the pathway of 

NF-κB is proinflammatory signaling pathways that 

activate NF-κB via pro-inflammatory cytokines and 

direct to activation of cytokines and chemokines such 

as IL-6, TNF-α, IL-8 and adhesion molecules, MMP, 

COX2, and iNOS (75). Moreover, NF-κB acts as a 

key factor in carcinogenesis by suppressing 

apoptosis, enhancing proliferation, and disrupts the 

balance between programmed death and proliferation 

toward uncontrollable cell growth. c-Myc and cyclin 

D1 are two proto-oncogenes expressed in response to 

NF-κB activation and participating in tumor 

development by constant stimulation (76). NF-κB 

also contributes in the last stage of carcinogenesis via 

increasing the angiogenesis and metastasis. MMPs, 

IL-8 and VEGF are targeted genes promoted by NF-

κB (77-78) (Figure 2). H. pylori infection is one of 
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stimuli way to activate NF-κB in gastric cancer. This 

cascade led to generation of pro-inflammatory 

cytokines (IL-8, TNF-α, INF-γ, and IL-6) (79-81).  

 

 

 
Figure 1. From gastritis to gastric cancer. Several environmental (cigarette smoke, bacterial and viral infection, foods) and genetic factors 
predispose people to gastric cancinogenesis. Acute phase (acute gastritis) is characterized by production of proinflammatory cytokines. Persistent 

acute response may lead to chronic phase (chronic gastritis). During chronic phase, ROS, cytokines, and transcription factors are produced. They 

initiate potent signaling cascades (NF-κB, STAT3, and HIF-1α) with numerous targets 
such as VEGF, cytokines, chemokines, c-myc, Bcl2, COX-2, iNOS and etc. These downstream targets are able to induce growth, angiogenesis, 

and metastasis and inhibit apoptosis. Immune responses activated as the result of chronic process develop chronic gastritis to atrophy, intestinal 

metaplasia, hyperplasia, dysplasia, and finally invasive form of gastric cancer with metastatic potential to other sites. 
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Another study implies to important role of H. pylori 

infection in NF-κB activation and induction of 

growth factors and cytokines network in gastric 

carcer. Several genes are expressed as an NF-κB 

downstream target during process of gastric 

carcinogenesis (IL-1, IL-6, IL-8, TNF-α, VEGF, 

COX2, iNOS, cell-cycle regulator, MMP2, MMP9, 

and adhesion molecules) (82). The results of these 

study confirmed NF-κB activation during 

inflammatory process and its role in carcinogenesis. 

Therefore, NF-κB acts as a mediator of inflammation 

progress, expression regulator of inflammatory 

molecules and also is a tumor promoter in 

inflammation.       

 

STAT3 

Signal Transducer and Activator of Transcription 3 

(STAT3) is a transcriptional factor mediating 

signaling pathway with survival, proliferation, and 

angiogenesis. Different cytokines releasing during 

inflammation like IL-1, IL-6, TNF-α, IL-22, and IL-

11 can activate STAT3 (83). Following STAT3 

activation, it regulates the expression of different 

genes involving in cell growth/proliferation and 

apoptosis (Figure 2). The role of STAT3 in colon, 

gastric, and liver cancers confirm its carcinogenic 

ability (84). Persistently, activated STAT3 mediates 

tumor-promoting inflammation through NF-κB and 

IL-6/gp130/JAK pathways. The hyperactivation of 

STAT3 is seen in 50% of human gastric cancer cases 

(85). Increased level of IL-6 as the result of STAT3 

activation is correlated with tumor development in 

neoplastic stomach tissue (86). Therefore STAT3 is a 

possible transcription factor linking inflammation to 

cancer.        

 

HIF-1α 

Hypoxia-inducible factor 1-alpha (HIF-1α) is a 

transcription factor regulating oxygen homeostasis 

(87). HIF-1α transcription is regulated by two 

pathways: oxygen dependent and inflammatory 

stimuli. It activates under condition of low oxygen 

tension. HIF-1α activation and transcription is 

necessary for expression of wide variety of target 

genes involved in oxygen homeostasis, angiogenesis, 

metabolism, cell proliferation and viability, tissue 

remodeling, and erythropoiesis (88). Furthermore, 

pro-inflammatory cytokines such as IL-1β and TNF-α 

and also growth factors and bacterial products can 

increase transcriptional activity of HIF-1α through 

NF-κB stimulation (89). HIF-1α activated during 

hypoxia may induce COX-2 that resulted in increased 

PGE2 level. PGE2 contributed in tumor growth and 

survival and trigger angiogenesis. PGE2 mediates 

feedback loop via initiating MAPK signaling 

pathway resulting in an increase of HIF-1α 

transcriptional activity (90). It is also demonstrated 

that IL-1β- produced COX-2/PGE2 pathway lead to 

activate HIF-1α (91). The role of HIF-1α in tumor 

extension, angiogenesis, and metastasis is performed 

through transcription of VEGF that increase vascular 

permeability, induce endothelial cell proliferation, 

leukocyte adhesion, and regulate neovessel lumen 

diameter (92) (Figure 2). The study on human gastric 

cancer TMK-1 cells suggested that the inhibition of 

HIF-1α activity affect tumor proliferation, 

angiogenesis, and vessel maturation. The occurrence 

of this effect is due to direct relationship between 

HIF-1α expression and VEGF (93). 

 

Nrf2 

Nuclear factor-erythroid 2 p45 (NF-E2)-related factor 

2 (Nrf2) is a major transcription factor associated 

with responding to oxidative stress by activating 

protective antioxidant and detoxifying enzymes. Nrf2 

enhances antioxidant activity and protects against 

pulmonary fibrosis (94). This regulatory effect is 

done by binding Nrf2 to antioxidant responding 

element (ARE) in the promoter of target gene 

encoding phase II detoxification and antioxidative 

defense enzymes. Beside the protection effect again 

ROS, Nrf2 has anti-inflammatory effects by 

regulating target genes involve in acute inflammation 

(95). Genetic polymorphisms were indentified in 

Nrf2 gene that increases the progression of gastric 

inflammation to gastric cancer (96). 

 
NFAT 

NFAT (Nuclear Factor of Activated T cell) is an 

immune-regulatory protein activated during the 

initiation phase of tumor formation by an unknown 

mechanism. The oncogenic effects of NFAT rely on 

cell type and tissue background (97). This 

transcription factor is expressed in T cells, mast cells, 

NK cells, and in certain monocytes, macrophages, 

and lymphoid tissues. NFAT-regulated effects result 

in production of pro-inflammatory genes. These in 

turn exacerbate the pathogenesis of inflammatory 

disorders such as inflammatory bowel disease (IBD) 

(98-99) Rheumatoid arthritis (RA) (100) and 

systemic lupus erythematosus (SLE) (101-103). 

Inhibition of NFAT attenuates the rise in Th2 

antibody and IL-4 production which leads to arrest 

the allergic airway inflammation. Thus Th2 immune 

responses require to NFAT activation in CD4
+
 T cells 

(104).  

NFAT proteins are regulated by phosphatase 

calcineurin activation which leads to NFAT nuclear 

localization. Upon NFAT binding to its target site, 

the cytokines IL-2, IL-4, IL-5, IL-13, IFN-γ, TNF-α, 

the cell surface proteins CD40 ligand (CD40L), 

Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), Fas 
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ligand (FasL), COX-2, and Cyclin-dependent kinase 

4 (CDK4) are induced. These factors are involved in 

cell cycle machinery, apoptosis, angiogenesis, cell 

growth and proliferation and invasion. In addition  

 

NFAT may act corporately with proto-oncogenes 

including: c-Fos, c-Jun (AP-1), and Egr protein (105-

106) (Figure 2).  

 

Figure 2. Inflammation-related cancer pathways. Chronic infection stimulates wide range of cellular responses upon activation of the signal 

transduction pathways such as NF-κB, STAT3, and HIF-1α. The derived-inflammatory mediators, transcription factors,

antiapoptotic factors, and others mediate different stages in carcinogenesis processes and inflammation. 



Amjadi et al. 

rmm.mazums.ac.ir                                                                                                              Res Mol Med, 2014; 2 (2): 8 

 

The role of NFAT proteins in regulation of different 

types of cancers is summarized in Pan et al study 

(107). CagA positive H. pylori-induced chronic 

infection increases the risk of developing chronic 

gastritis to gastric adenocarcinoma. CagA activates 

NFAT in gastric epithelium by phosphorylation and 

thereby localizes it in nucleus. The role of NFAT in 

growth and differentiation is related to disease 

resulting from H. pylori infection (108).   

Chemokines and Cytokines  

Chemokine are a major part of cancer- related 

inflammation. Chemokines are classified into four 

groups according to positions of key conserved 

cystiene residues: C, CC, CXC, and CX3C. They are 

mainly identified as inflammatory mediators 

recruiting leukocytes (neutrophils and monocytes) in 

inflammation site and tumor. CXC and CC 

chemokines and their receptors are associated with 

tumor growth/proliferation and migration (109). 

Chemokines are involved in tumor growth and 

development by participating in angiogenesis and 

metastasis processes. Chemokines are capable of 

inducing the expression and activation of several 

MMPs especially MMP-9 resulted in extracellular 

matrix degredation and enhance tumor invasion 

(110). Gene expression profiling detects increased 

levels of CXCR4 in gastric cancer. In addition 

CXCR4 is capable of activating MMP-7 and MMP-9, 

while it up-regulate MMP2 and MMP-7 along with 

CXCR12 in gastric carcinoma (111). Several 

cytokines and pathways are responsible for 

chemokine production; IL-1, TNF-α, NF-κB, 

JAK/STAT, and AP-1 (112). NF-κB is one of key 

pathway that modulates the transcription of 

chemokines including: CXCL1, -2, -3, -5, -8, -9, -10, 

and -12, and CCL2, -3, -4, -5, -11, and -17. Since this 

pathway is a well documented way for cell growth, 

angiogenesis, metastasis, and apoptosis; such 

chemokines regulates different processes of 

carcinogenesis (113). Following H. pylori infection, 

CXCR1 and CXCR2 are expressed in gastric cancer. 

TNF-α positively affects on secretion of CXCR4 in 

H. pylori-infected gastric cancer (114). Chemokines 

facilitate tumor infiltrating leukocytes and develop 

tumor cell homing to metastasis. CCR7 found in 

gastric and other types of cancers is able to induce 

metastasis (115). H. pylori -associated infection lead 

to multiple stages of gastric carcinogenesis. High 

level of T-cell infiltration is seen in H. pylori 

inflammatory site in gastric epithelium. This T-cell 

migration is a key step in increasing the gastric 

inflammation which in turn leads to gastric cancer. It 

is found that the complex of CCL20 and CCR6 is 

implicated in CD3
+
 T cells infiltration during gastritis 

caused by H. pylori (116). 

iNOS 

Inducible Nitric Oxide Synthase (iNOS), lead to 

generate nitric oxide (NO), overexpresses in many 

different types of malignancies and involved in 

various inflammatory processes (117). Cytokines 

such as TNF- α and IL-1α are capable of inducing 

and then trans-activating iNOS by NF-κB (118) 

(Figure 2). Nitric oxide produced by iNOS mediates 

carcinogenic process by inducing DNA damage, p53 

mutation or loss resulted in COX2 activation and 

angiogenesis, tumor growth, migration, invasion, and 

metastasis (119). iNOS expression was detected at 

increasing frequency in several types of tumor such 

as colon, lung, oropharynx, reproductive organs, 

breast, and central nervous system but also plays a 

key role in the occurrence of chronic inflammatory 

diseases (120). High iNOS expression levels were 

detected in gastric mocusa of H. pylori-positive 

patients. H. pylori-induced IL-1, 6, 8, and TNF-α are 

involved in inflammation. IL-1 and TNF-α could also 

overexpress iNOS in gastric mocusa (121).   

 

COX-2 

Cyclooxygenase (COX)-2 is the inducible type of the 

prostaglandin synthase enzyme (122) which 

involving in catalyzing the conversion of arachidonic 

acid to various types of inflammatory and 

physiological mediators, including prostaglandins 

and thromboxane (123). The expression of COX-2 is 

induced by both proinflammatory cytokines (IL-1β, 

TNF-α, EGF) and mutagenic factors [Figure 2]; but 

also antiinflammatory cytokines such as IL-4, IL-10, 

and TGF-β and dexamethasone and NSAIDs suppress 

COX-2 expression. The activity of COX-2 resulted in 

production of PGE2 and PGI2 that lead to promote 

tumor growth by their angiogenic activity. In 

addition, COX-2 may increase malondialdehyde 

derivative and up-regulate Bcl2 protein. 

Malondialdehyde is produced during lipid 

peroxidation and prostaglandin and involved in 

genomic instability. Bcl2 is an antiapoptotic factor 

suppressing apoptosis by inhibiting mitochondrial 

cytochrome c release and prevents caspase activation 

(124). The overexpression of COX-2 is a key event in 

the early stage of gastric carcinogenesis (125). The 

elevated level of COX-2 is investigated in gastric 

cancer by mechanisms: H. pylori infection, mutation 

in tumor suppressor genes and activation of NF-κB 

cascade. COX-2 is associated with proliferation, 

apoptosis, angiogenesis, metastasis, and invasion 

during gastric cancer progression (126). 

 

TNF-α 

Tumor necrosis factor (TNF- α) is an important 

inflammatory cytokine initially identified for its 

anticancer property to induce rapid haemorrhagic 
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necrosis of experimental cancers (127). TNF-α 

participates in all process of carcinogenesis. TNF-α 

stimulates tumor initiation and promotion via 

activation of NF-κB, PKCα, and AP-1 signaling 

pathway. TNF-α enhances tumor cell growth and 

survival without differentiation through NF-κB-

dependent pathway. It recruits angiogenic factors 

such as IL-8 and VEGF to enhance angiogenesis in 

JNK and AP-1 dependent manner (Figure 2). TNF-α 

could increase tumor cell invasion and enhance cell 

migration and metastasis mediated through up-

regulation of NF-κB, JNK and induction of MMPs 

and EMT acceleration (128). Following the different 

pathogenic stimuli, TNF-α induces inflammatory 

mediators and proteases regulating inflammatory 

responses (129). Therefore, TNF-α secreted by 

inflammatory cells in tumor microenvironment 

contributes in both tumorigenesis and inflammatory 

process. H. pylori is a protean stimulator of TNF-α 

which in turn increase the expression of CXCR4 in 

gastric cancer (130).      

 

IL-6 

Interleukin (IL)-6 is a pleiotropic cytokine mediating 

inflammation processes and activating different cell 

types through signaling pathway. IL-6 binds to its 

common signaling receptor, gp130, triggers 

JAK/STAT pathway (131). STAT pathway is well 

known in its ability to link cytokine signal to cellular 

transcriptional events. STAT protein regulates many 

critical processes in carcinogenesis including cell-

cycle progression, apoptosis, tumor angiogenesis, 

tumor-cell invasion, and metastasis, and tumor-cell 

evasion of the immune system (132) [Figure 2]. A 

study on AGS gastric cancer cells demonstrated that 

treatment with IL-6 resulted in AGS cell motility and 

invasion through c-Src/RhoA/ROCK signaling 

pathway (133). Thus IL-6 acts as a main regulator of 

tumor-associated inflammation and tumorigenesis. 

 

IL-17 

Interleukin (IL)-17 is a new subset of cytokine 

mainly generated by CD4
+ 

Th17 cells. Its ability to 

stimulate the expression of inflammatory mediators 

including TNF-α, IL-6, and IL-1β (134) classified it 

as a proinflammatory cytokine (Figure 2). 

Furthermore IL-17 is over-expressed in many 

inflammatory diseases like airway inflammation, 

rheumatoid arthritis, intraperitoneal abscesses and 

adhesions, inflammatory bowel disease allograft 

rejection, psoriasis, cancer, and multiple sclerosis 

(135). On the other hand the elevated IL-17 

expression level is found in many types of 

malignancies including ovarian, cervical, breast, 

hepatocellular carcinoma, esophageal, gastric 

cancers, and CRC (136). There are several proposed 

mechanisms in which IL-17 can promote 

tumorigenesis; IL-17 stimulates the production of 

angiogenic factors such as GE1, PGE2, VEGF, 

keratinocyte-derived chemokine (KC), and 

macrophage inflammatory protein-2 (MIP-2) from 

tumor cells and enhance angiogenesis (137). IL-17 

may activate JAK/STAT3 pathway via IL-6 

production and resulted in tumor growth and survival 

(138) (Figure 2). IL-17 plays a paradoxical role 

(139), since it increases tumor cytokines production 

and has a partial anti-tumor activity. In the latter 

activity, IL-17 acts through promoting the activity of 

CD4
+
 and CD8

+
 T cells and immune response (140). 

Single nucleotide polymorphisms (SNPs) of the IL-

17 gene associated with cancer risk (141-142). A new 

study demonstrated the significant association of G-

197A polymorphism in IL-17A promoter to gastric 

cancer (143).         

 

IL-1β 

Interleukin-1β (IL-1β) is a proinflammatory cytokine 

up-regulated in various types of cancers: breast, 

colon, lung, head and neck cancers, gastric, and 

melanomas (144-145). IL-1β participates in 

carcinogenesis process via its ability in production of 

angiogenc and pro-metastatic factors such as VEGF, 

IL-8, IL-6, TNFα, and TGFβ (146). IL-1β can induce 

neoplasia in stomach and direct gastric inflammation 

to gastric cancer in NF-κB- dependent way. HIF-1α 

expression is up-regulated by NF-κB and COX-2 

mediation and resulting in induction of VEGF 

expression (Figure 2). Therefore IL-1β is indicated as 

a potent angiogenic factor (147). The effect of IL-1β 

on expression of MMPs proves its role in matrix 

degradation, cell migration, metastasis, and tissue 

remodeling; IL-1β may stimulate MMP9 via p42/p44 

MAPK, p38 MAPK, JNK, and NF-κB in airway 

inflammatory responses (148). H. pylori infection-

induced gastric cancer risk is correlated with gene 

polymorphisms in IL-1β (149). Investigation of 

stomach-specific human IL-1β in transgenic mice 

showed that IL-1β increases the risk of malignancies 

(150). 

 

VEGF 

Vascular endothelium growth factor (VEGF) is a 

critical factor in angiogenesis. Angiogenesis not only 

is a required step in tumorigenesis (151) but also is an 

important pathologic sign of inflammatory disorders 

such as rheumatoid arthritis (152).  Several 

inflammatory cytokines such as IL-1β, COX-2, IL-6, 

and oncostain M (OSM) induce the secretion of 

VEGF via HIF-1α and NF-κB pathway. Thus 

following chronic inflammation and cytokines 

production, VEGF is generated and provide a 

pathway for angiogenesis/ oncogenesis (153) (Figure 



Amjadi et al. 

rmm.mazums.ac.ir                                                                                                              Res Mol Med, 2014; 2 (2): 10 

 

2). H. pylori infection increases the expression of 

VEGF-promoting angiogenesis and gastric cancer 

invasion. The participation of VEGF in gastric 

adenocarcinoma is highly mediated by COX-2 and 

NF-κB (154). 

     

Anti-inflammatory agents in order to treat cancer 

The close linking between inflammation and cancer 

especially gastric cancer lead to successful cancer 

treatment by antiinflammatory agents and also many 

anticancer agents are used to treat inflammation. 

NSAIDs are non-steroidal anti-inflammatory drugs 

contributing in cancer therapy and prevention via 

COX-2 inhibition. COX-2 contributes in carcinogenic 

processes due to its ability to augment the production 

of prostaglandins, convert procarcinogens to 

carcinogenic metabolites, inhibit apoptotic cell death, 

stimulate tumor angiogenesis, alter inflammatory and 

immune responses, and increase the invasion of 

cancerous cell. The preventive and treatment effects 

of NSAIDs-inhibiting COX-2 are detected on gastric 

cancer (155). Celecoxib is newer NSAIDs that called 

COX-2 inhibitors playing a major role in cancer 

prevention or monotherapy for cancer (156); the 

preventive effects of celecoxib on gastric cancer were 

proved in rats (157). Aspirin and celecoxib decreases 

gastric tumorigenesis by inhibiting Wnt signaling 

pathway. Nimesulide is a COX-2 inhibitor that has 

therapeutic effects on gastric cancer cells in Wnt 

inhibition-dependent way (158). 

Besides the chemical drugs, there are a large number 

of herb/plant-derived natural products (capsaicin, 

resveratrol, various compounds in garlic, curcumin, 

ginsenosides) that decrease or prevent inflammation. 

Their possible antiinflammatory mechanisms 

containing: prevention of NF-kB, COX-1 and -2, 

MAPK, JNK and ERK1/2 signaling pathway, 

decreasing VEGF, and iNOS that are resulted in 

inhibiting growth and proliferation and direct to 

apoptosis and cell cycle arrest (159). Curcumin is a 

well known therapeutic agent with antioxidant, 

antiinflammatory, analgesic and anti-septic activity. 

It has been demonstrated that curcumin vigorously 

affect on gastric cancers via preventing transcription 

of NF-κB and downregulates its target genes, Bcl-2, 

Bcl-xL (160).  

Conclusion 

Growing evidences indicate that there is a close 

connection between inflammation and cancer. 

Chronic inflammation is believed to cancer initiation 

and progression by number of cytokines. Genomic 

alterations such as DNA damage, increased DNA 

synthesis, block the repair pathway, and inhibit 

apoptosis may direct to chronic inflammation. 

Although considerable effort has been expended to 

clarify some pathways making a bridge between 

inflammation and cancer, there are some possible 

mechanisms that are still not elucidated. Further 

studies are needed to identify new pathways and/or 

detail unknown cross-talk and routs in the present 

mechanisms. This is important issue in human health 

since many therapeutic agents target signaling 

pathways. Therefore new achievements may 

represent novel therapeutic approaches or modify 

previous therapy intervention results. This in turn 

results in decreasing the incidence of inflammatory-

induced cancers, improves patient’s chance of 

recovery and healing processes and also positively 

affects on inflammatory disorders. 
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