Volume 1, Issue 2 (Jul 2013)                   Res Mol Med (RMM) 2013, 1(2): 33-38 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tahmasbi M H, Joghataei M T, Soleimani M, Moosavi S A, Yazdanparast S A, Zaker F. 3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression. Res Mol Med (RMM) 2013; 1 (2) :33-38
URL: http://rmm.mazums.ac.ir/article-1-38-en.html
1- 1Cellular and Molecular Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
2- 1Cellular and Molecular Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran , Joghataei@Iums.ac.ir
3- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
4- Department of Allied Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
Abstract:   (6670 Views)

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umbilical cord blood by the expression of CD34 and FLK-1 antigens expressed in both angioblasts and hematopoetic stem cells. The HCB derived mesenchymal stem cells (MSCs) can be differentiated into adipocyte, osteocyte, chondrocyte and ECs. In this study, the differentiation of human cord blood mesenchymal stem cells (hCBMSCs) into endothelial-like cells was induced in the presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated ECs were then examined for their ability to express VEGF receptor-2 (VEGFR2) and von Willebrand factor (vWF). These cells were adopted to grow, proliferate and develop into a capillary network in a semisolid gel matrix in vitro. The capillary network formation in each well of 24-well plate was found to be 80% in presence of VEGF (40 ng/ml) and IGF-1 (20 ng/ml) of culture media, suggesting that the capillary network formation is associated with endothelial-like cells derived from hCBMSCs by expression of their markers.

Full-Text [PDF 493 kb]   (2768 Downloads)    
Type of Study: Research | Subject: Immunology
Published: 2013/10/22

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research in Molecular Medicine

Designed & Developed by : Yektaweb