Prediction of MicroRNAs Bind to Toll-like Receptors Pathway in Chicken Based on Bioinformatic Methods

Maryam Gholizadeh¹ (0), Jamal Fayazi^{1*} (0), Somayeh Rahimnahal¹ (0)

1. Department of Animal Science, Faculty of Animal and Food Science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran.

Citation Gholizadeh M, Fayazi J, Rahimnahal S. Prediction of MicroRNAs Bind to Toll-like Receptors Pathway in Chicken Based on Bioinformatic Methods. Research in Molecular Medicine. 2019; 7(4):33-42. https://doi.org/10.32598/rmm.7.4.33

doi[°] https://doi.org/10.32598/rmm.7.4.33

Article Type: Research Article

Article info: Received: 19 Sep 2019 Revised: 12 Oct 2019 Accepted: 29 Oct 2019

Keywords:

Toll-like receptors pathway, microRNAs, Bioinformatic method, Inflammatory diseases

ABSTRACT

Background: Toll-like receptors (TLRs) detect diverse pathogen-associated molecular patterns and play a critical role in the innate immune response. Hosts should activate TLR-signaling pathways to eliminate invading pathogens. However, excessive activation of these pathways may interrupt immune homeostasis, leading to several diseases. Therefore precise regulation of TLR-signaling pathways is essential. Meanwhile, miRNAs (microRNAs) act similar to a class of small noncoding RNAs with gene regulatory functions. The regulation of TLR expression by miRNAs may be one of the valid points for targeting TLRs.

Materials and Methods: In this study, we predicted most of the microRNAs bind to the TLRs pathway in the chicken, based on the bioinformatic methods. All genes involved in the TLR signaling pathway in chicken species were extracted from the KEGG database (Entry: gga04620) and analyzed based on different applications.

Results: We predicted 19 miRNAs for the 18 target genes of the TLR pathway that may provide essential clues for identifying novel drug targets for inflammatory diseases.

Conclusion: Substantial miRNA was found as gene regulators. As newly identified regulators, the performance mechanism of miRNAs in combination with other regulatory mechanisms will control the outcome of immune responses and these issues should be investigated in future studies

Introduction

oll-Like Receptors (TLRs) are members of a large family of Pattern Recognition Receptors (PRRs) system, responsible for the recognition of Pathogen-Associated

Molecular Patterns (PAMPs) of infectious pathogens [1]. Following the PAMPs recognition, PRRs initiate

innate immune responses by activating intracellular signaling cascades that lead to a transcriptional expression of inflammatory mediators. Studies of the TLR signaling pathway are most advanced in mouse and human [2]; however, research is limited to a series of TLRs in other vertebrates, including fish, chickens, cattle, sheep, dog, and pig [1, 3-5].

* Corresponding Author: Jamal Fayazi, PhD. Address: Department of Animal Science, Faculty of Animal and Food Science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran. Phone: +98 (916) 6124162 E-mail: j_fayazi@asnrukh.ac.ir

.....

Key features of this pathway are similar between birds and mammals, but some definite differences exist, too. Chicken TLR collection consists of 10 genes similar to humans, and TLRs 3, 4, 5, and 7 are orthologous in other vertebrates [6]. TLRs signaling pathway is regulated by positive or negative conflation at multiple levels to prevent excessive inflammation. Several mechanisms and molecules are responsible for the regulation of the TLR-signaling pathways. Among many regulatory molecules, microRNAs (miRNAs) have received extensive consideration as a newly identified family of regulators involved in fine-tuning of TLR-signaling pathways.

These miRNAs are small single-stranded noncoding RNAs (approximately 19 to 24 nucleotides long) with the significant role of regulating gene expression in developmental processes. Many studies have demonstrated that genes expression profiles of TLR-signaling pathways are subject to change when controlled by annealing to miRNAs. The first study that indicated the regulatory role of miRNAs in the immune response published in 2004 with a report showed selective expression of miR-142a, miR-181a, and miR-223 in immune cells14.

Baltimore et al. demonstrated that the upregulating expression of miR-132, miR-155, and miR-146a is associated with the stimulation of lipopolysaccharide [7]. Quinn et al. investigated on a trio of miRNAs (miR-155, miR-21, and miR-146) with proven-control over TLR signaling and many immune and inflammatory pathways [5]. Using the bioinformatic methods, Cui et al. predicted the role of miR-8159 that was explored in regulating TLR13 and was involved in inflammatory responses of miiuy croaker [1]. Since the miRNAs may serve as significant regulators for adjusting the differentiation of immune cells as well as the immune responses to pathogens, this study provides the basic idea to detect miRNA in chicken that regulates gene expressions of TLR-signaling pathways based on bioinformatic methods.

Materials and Methods

All genes involved in the TLR-signaling pathway in chicken species were extracted from the KEGG database (KEGG database pathway: gga04620) and examined for this study. A large number of tools for miRNA prediction have been developed in recent years based on computational algorithms. These tools identify miRNAs using features such as sequence conservation, structure, thermodynamic parameters, and sequence-specific parameters. miRDB is an online database for miRNA target prediction and functional annotations (http://mirdb.org/miRDB/index.html) [8].

All targets in miRDB are predicted by a bioinformatics tool, MirTarget [9], which has been developed by examining thousands of miRNA-target interactions from high-throughput sequencing experiments. Common features related to miRNA target binding have been identified and used to predict miRNA targets with machine learning methods. miRDB hosts have predicted miRNA targets in five species: human, mouse, rat, dog, and chicken. For the initial stage for the prediction of miRNA, the total genes of the TLR-signaling pathway were analyzed by miRDB software. Information includes total miRNA prediction, gene symbol, NCBI GeneID, 3'-UTR length, 3'-UTR sequence, miRNA name, target score, and miRNA sequence.

The seed location for each gene was obtained with miRDB software. In the second stage, the outputs of miRDB with high scores were analyzed by miRmap. It is an open-source software library that integrates thermodynamic, evolutionary, probabilistic, and sequence-based features. Thermodynamic features of miRmap include " Δ G duplex" and " Δ G binding" that assess the energy of the miRNA–mRNA duplex, " Δ G open" that evaluates the energy necessary to unfold the 3'-UTR and make the area accessible for RISC binding and " Δ G total" (also named ' Δ AG' by Kertesz et al. [10]) that sums " Δ G duplex" and " Δ G open". Since the publication of the miRmap library, we have added new features, i.e. " Δ G seed duplex" and " Δ G seed binding", that specifically evaluates the seed region.

miRmap allows us to examine feature correlations and to compare their predictive power in an unbiased way using high throughput experimental data from immune purification, transcriptomics, proteomics, and polysome fractionation experiments [6]. This software is used for the prediction of miRNAs in human, mouse, rat, chicken, and other metazoan genomes. The output of miRmap software for each gene includes gene name, miRNA name, miRmap score, ΔG duplex, ΔG open, and multiple binding sites.

Results

Genes involved in the TLR signaling pathway in chicken

Gene list of chicken TLR-signaling pathways containing 83 genes were extracted from the KEGG database that (Table 1). Different TLRs genes play crucial roles in the activation of the immune response to PAMPs. TLR1, TLR2, TLR4, TLR5 tend to specialize in recognition of bacterial components present on the outer surfaces,

Gene Symbol	GenelD	Gene Symbol	GeneID	Gene Symbol	GeneID	Gene Symbol	GeneID
TLR1A	426274	LOC107050551	107050551	СНИК	423669	PIK3R2	771142
TLR1B	771173	MAPK11	417739	ІКВКВ	426792	PIK3R1	427171
TLR2A	374141	MAPK14	421183	ІКВКВ	107054958	AKT1	395928
TLR2B	769014	MAPK12	769763	NFKBIA	396093	AKT3	421497
TLR2L	100858824	MAPK13	771145	NFKB1	396033	TOLLIP	423099
LY96	420189	MAPK8	423778	RELA	396027	MYD88	420420
TLR3	422720	МАРК9	395983	MAP3K8	420479	TIRAP	419715
TLR4	417241	MAPK10	422592	MAP2K1	415549	FADD	423146
TLR5	554217	JUN	424673	MAP2K2	396349	CASP8	395284
TLR7	418638	FOS	396512	MAPK1	373953	CASP8L	107056614
СТЅК	395818	IL1B	395196	MAP2K3	416496	IRAK4	417796
RAC1	395871	IL6	395337	MAP2K6	417445	FNA3	396398
PIK3CA	424971	IL12A	407090	MAP2K4	417312	CD86	427944
PIK3CD	419444	IL12B	404671	LOC100859032	100859032	IRF5	430409
РІКЗСВ	424826	IL8L2	396495	LOC100858177	100858177	IRF7	396330
PIK3R3	429096	IL8L1	395872	LOC100857947	100857947	SPP1	395210
TRAF6	423163	CCL5	417465	LOC100857744	100857744	IKBKE	430480
TAB1	418014	CCL4	395551	IFNKL	101750245	TBK1	417825
TAB2	421622	TICAM1	100008585	LOC107049337	107049337	TRAF3	423471
MAP3K7	421808	RIPK1	378921	IFNW1	554219	CD40	395385
CD80	768950	STAT1	424044	IFNAR1	395665	IFA3L	768614
IFNAR2	395664	-	-	-	-	-	-

Table 1. Some of 83 genes List in chicken TLR signaling pathway

whereas TLR3 and TLR7 specialize in recognizing nucleic acids, especially of viral origin. In the chicken, before the genome release, in silico clustering of expressed sequence tags revealed homologs of the TLR pathway, including two TLRs, one homologous to human TLR3 and the other similar to human and mouse TLR1, TLR6, and TLR10 [3, 11].

Other chicken TLR-pathway genes identified include those encoding Toll Interacting Protein (TOLLIP), Interleukin-1 Receptor-Associated Kinase 4 (IRAK4), Myeloid Differentiation factor 88 (MyD88), MyD88adapter-like protein (Mal or TIRAP), Tak1-binding proteins 1 and 2 (TAB1 and TAB2), Tumor Necrosis Factor Receptor (TNFR)-Associated Factor 6 (TRAF6), Transforming Growth Factor-beta (TGF)-Activated Kinase (TAK1), and IB kinases and IKK [9, 12].

Properties of Chicken TLR

The chicken TLR repertoire consists of 10 genes (Table 2). Phylogenetic analyses show that 6 genes have orthologues in mammals and fish, while one is only shared by fish, and three appear to be unique to birds. In the chicken, TLR2 and TLR4 have been identified and characterized at molecular and functional levels [6]. Comparisons of structural predictions for the chicken TLRs

Gene symbol	Chromosome	Location	Number of Exons	Length (aa)	Length (genomic)	Genebank Nucleotide	Genebank Protein
TLR1LA	4	41563594-71566050	1	818	2457	AB109401	BAD67422
TLR1LB	4	71553122-71555080	1	722	5005	DQ518918	ABF67957
TLR2A	4	21105675-21108056	1	793	2382	NM204278	NP989609
TLR2B	4	21113342-21115936	1	781	2594	AB046533	Q9DGB6
TLR3	4	63155888-63160902	4	896	5015	NM001011691	NP_001011691
TLR4	17	4062994-4067445	3	843	4452	AY064697	AAL49971
TLR5	3	18975945-18978530	1	862	2589	AJ626848	CAF25167
TLR7	1	126824071-126830542	2	1059	6381	AJ626848	CAF25167
TLR15	3	2945856-2948462	1	868	2607	XM419294	XP419294
TLR21	11	338885-342202	2	972	3317	NM001030558	NP001025729
							8 8000

Table 2. List of chicken TLR genes

shown they have a pattern of gene duplication and gene loss when compared to mammals.

Fukui et al. identified two types of chicken TLR2 that both forms (TLR2A and TLR2B), with identical TIR domains, have been mapped to the same region of chromosome 4 and suggested that they arose by gene duplication [12]. Chicken Expressed Sequence Tag (ESTs) have been identified with the highest homology to mammalian TLR1, TLR6, or TLR10, and TLR3 [9].

All TLRs except TLR3 can signal through the adaptor molecule MyD 88 (myeloid differentiation factor 88). In the MyD 88-dependent pathway, the adaptor is bound to TLR's intracellular domain. The newly discovered TLR15 has the unusual feature of many LRRs clustered towards the C-terminus of the molecule and few at the N-terminus. TLR7 has the uncharacteristic feature of a splice variant with two predicted transmembrane domains only previously found in mammalian.

Result of miRNA target search with the standard query interface in miRDB

miRNA regulates gene expression mainly by annealing to a complementary region within the 3'-UTR of their target mRNA. The result of miRDB showed that of 83 genes involved in the TLR pathway, only 70 genes were detected as miRNA targets. Other genes were not the targets of miRNAs recorded in the miRNA database for Gallus species. A gene can have some binding sites with one or several miRNAs [13]. The output of software reported annealing to a target in 3'-UTR with score >50, so 1119 miRNAs were detected for 70 genes. To enhance the accuracy and prevent the creation of false-positive errors, we considered annealing with a target score >80 for the next analysis, so 247 miRNAs were confirmed for target genes.

In this software, major factors were searched for prediction miRNA to find a perfect complementary seed. The seed length for this program is between 6 and 8 nucleotides that shorter length leads to the prediction of the considerable quantity of false sites. AKT3 gene has 3'-UTR length of 3565 and 53 binding sites for 38 miRNA that have most miRNA binding sites among the 70 genes of the TLR pathway (6 connection with target score =100).

Positions 12, 206, 1058, and 3133 in the 3-UTR of AKT3 gene with similar seed sequence were targets for several miRNAs, including gga-miR-15a, gga-miR-16-5p, gga-miR-16c-5p, gga-miR-15b-5p, and gga-miR-15c-5p (seed sequence: AGCAGC and 3-UTR: TGCT-GCT). Positions 205, 2563, and 3132 were targets for gga-miR-6598-5p that sequence TTGCTGC of 3-UTR annealing with seed sequence UGCAGC. NFKB1, MAP2K2, MAPK13, IL6, IRF7, TRAF3, and IFNAR1 have only one binding site for miRNA.

Comprehensive microRNA target prediction

Using the 3-UTR sequence and miRNA, miRDB predicted all genes (70 genes were targets for 247 miR-

Gene Symbol	miRNA Name	miRmap Score	ΔG Duplex	∆G Open	Binding Sites
LOC100858824	gga-miR-15a	0.35	-12.07	7.07	8
LOC100858824	gga-miR-16-5p	0.39	-12.15	8.37	8
LOC100858824	gga-miR-15c-5p	0.36	-12.83	8.37	8
LOC100858824	gga-miR-15b-5p	0.35	-13.2	8.37	8
LOC100858824	gga-miR-16c-5p	0.36	-12.72	8.37	8
PIK3CD	gga-miR-196-1-3p	0.48	-7.36	8.30	3
PIK3CB	gga-miR-214	0.10	-15.02	13.72	4
РІКЗСВ	gga-miR-21-3p	0.04	-12.05	8.65	2
PIK3R5	gga-miR-6609-3p	0.08	-19.55	21.27	2
PIK3R2	gga-miR-3536	0.00	-13.70	33.56	1
PIK3R1	gga-miR-383-3p	0.43	-13.08	12.73	5
PIK3R1	gga-miR-6544-5p	0.86	-8.45	14.72	2
PIK3R1	gga-miR-6550-5p	0.62	-12.96	8.47	8
PIK3R1	gga-miR-6699-5p	0.87	-11.35	8.21	7
PIK3R1	gga-miR-1617	0.13	-16.73	13.33	3
PIK3R1	gga-miR-1687-5p	0.64	-10.48	2.18	7
AKT3	gga-miR-15c-5p	-0.36	-16.00	9.09	5
AKT3	gga-miR-15b-5p	-0.39	-14.28	9.09	6
AKT3	gga-miR-16c-5p	-0.36	-16.05	9.09	6
AKT3	gga-miR-16-5p	-0.35	-14.13	9.09	6
AKT3	gga-miR-6598-5p	0.11	14.84	7.20	7
АКТЗ	gga-miR-15a	-0.35	-12.85	9.05	6
AKT3	gga-miR-1612	4.01	-7.82	6.04	21
TOLLIP	gga-miR-383-3p	-0.08	-16.95	13.39	2
TOLLIP	gga-miR-16-5p	-0.13	-12.45	8.84	7
TOLLIP	gga-miR-15c-5p	-0.14	-12.01	8.84	7
TOLLIP	gga-miR-15b-5p	-0.14	-12.20	8.84	7
TOLLIP	gga-miR-15a	-0.12	-11.59	7.63	7
TOLLIP	gga-miR-7456-3p	0.18	-11.8	7.57	5
TOLLIP	gga-miR-6706-5p	0.64	-12.42	10.16	5
MYD88	gga-miR-7442-5p	0.38	-15.52	9.06	5
MYD88	gga-miR-1804	0.30	-14.94	13.11	5
FADD	gga-miR-1612	5.58	-7.67	3.66	29
TRAF6	gga-miR-6562-5p	0.27	-15.23	9.70	6
TAB1	gga-miR-3594-5p	0.12	-16.73	10.55	2
TAB1	gga-miR-1623	-0.06	-18.55	15.51	2
TAB2	gga-miR-1704	0.05	-15.96	12.39	3
TAB2	gga-miR-1625-3p	0.24	-14.50	12.58	3
TAB2	gga-miR-6598-5p	-0.01	-12.50	12.75	1
MAP3K7	gga-miR-9-3p	0.24	-12.45	13.00	2
MAP3K7	gga-miR-1730-5p	0.01	-16.10	22.81	1
MAP2K2	gga-miR-1757	-0.25	-18.01	10.51	2
MAP2K3	gga-miR-1754-3p	-1.00	-19.35	17.97	10
MAP2K3	gga-miR-6609-3p	-0.87	-21.74	18.22	8

Table 3. Results of miRmap analysis confirming only 27 genes and 67 miRNAs out of 70 genes and 247 miRNAs that were as input

Gene Symbol	miRNA Name	miRmap Score	ΔG Duplex	ΔG Open	Binding Sites
MAP2K6	gga-miR-1590	-0.09	-15.10	9.99	1
MAP2K6	gga-miR-1574-3p	-0.13	-15.00	7.56	2
MAPK14	gga-miR-6639-5p	0.21	-13.07	11.50	6
MAPK13	gga-miR-7456-3p	0.04	-16.36	6.10	15
MAPK13	gga-miR-1599	0.18	-14.78	5.77	10
MAPK8	gga-miR-15a	-0.31	-17.12	11.12	2
MAPK8	gga-miR-15c-5p	-0.30	15.55	11.11	2
MAPK8	gga-miR-16c-5p	-0.29	-15.00	11.11	2
MAPK8	gga-miR-196-2-3p	-0.30	-16.02	11.11	2
MAPK8	gga-miR-15b-5p	-0.33	-15.21	11.11	2
MAPK8	gga-miR-107-3p	0.04	-16.30	11.08	2
MAPK8	gga-miR-103-3p	0.04	-16.30	11.08	2
МАРК9	gga-miR-6667-5p	0.13-	-16.20	2.16	1
МАРК9	gga-miR-6566-3p	-0.12	-15.08	12.60	2
MAPK10	gga-miR-6562-5p	0.23	-14.12	7.29	13
RIPK1	gga-miR-6633-5p	0.25	-11.85	14.17	2
RIPK1	gga-miR-1687-5p	0.26	-10.40	13.78	2
TBK1	gga-miR-1687-5p	0.42	-12.95	12.84	4
TBK1	gga-miR-6633-5p	0.61	-13.08	13.11	5
STAT1	gga-miR-30c-1-3p	-1.15	-14.11	1.15	12
STAT1	gga-miR-1599	-1.18	-14.05	1.18	12
IRF7	gga-miR-1723	-0.21	-20.80	31.94	1
IFNAR1	gga-miR-1768	-0.11	-14.60	22.76	1
					%

NAs), then this sequence is analyzed one by one with miRmap algorithm to find miRNAs that was approved in both applications. The result of miRmap analysis was confirmed only 27 genes and 67 miRNAs of 70 genes and 247 miRNAs that were as input software (Table 3).

FADD gene contains 29 binding sites for ggamiR-1612 with a target score of 5.8; energy-duplex, -6.77, and ΔG open, 3.66, which was the highest score and number of binding sites between 70 genes. Analysis of this gene with miRDB represents 10 miRNA binding sites for 4 miRNAs that 2 binding sites belonged to gga-miR-1612 (target score 97%). Also, the AKT3 gene has 57 binding sites for 7 miRNA that 21 sites belonged to gga-miR-1612 with target score, 4.1; energy-duplex, -7.82; and ΔG open, 6.04 which was the highest score after the FADD gene.

Annealing gga-miR-3536 to 3'-UTR of the PIK3R2 gene with Δ G open of 33.56 was the most unstable connection in terms of energy. Of 5 miRNAs identified in the miRDB for this gene, only gga-miR-3536 was identified in miRmap with a score of 85%, because a low

score in both programs cannot be selected as a candidate for this gene.

miRNA bind to the TLR pathway

For the final confirmation of miRNA, the results of miRDB and miRmap were studied simultaneously. For this purpose, miRNAs were confirmed as candidates that both programs received high scores for the target mRNA. Finally, 19 miRNAs for 18 genes of the TLR pathway were identified (Table 4). Since the miRDB scores above 80 were considered significant, so between outputs of miRmap, those miRNAs were selected that received a higher score than other connections.

Discussion

Inflammation is a natural process to resolve an injury and return the immune system to homeostasis [14, 15]. Recently many studies have focused on understanding the roles of miRNAs in innate immunity [16-18]. Identifying miRNAs involved in controlling the TLR signaling pathways, innate immune responses, and viral

Gene Symbol	miRNA	Score in miRDB	Score in miRmap	miRNA Sequence and Seed
LOC100858824	gga-miR-16-5p	87	0.39	CAAGAACAUCAAACUACCUGAU TGTTCTT
PIK3CD	gga-miR-196-1-3p	94	0.48	CAAGAACAUCAAACUACCUGAU TGTTCTT
РІКЗСВ	gga-miR-214	85	0.10	ACAGCAGGCACAGACAGGCAG CCTGCTG
PIK3R5	gga-miR-6609-3p	97	0.08	ACAGCCCCUGUGCUCUGACCGCA GGGGCTG
PIK3R1	gga-miR-6699-5p	91	0.87	UGAAGACCUCGUGCAUUGUAGC GGTCTTC
AKT3	gga-miR-1612	99	4.01	GAAGGAAAAGGAGCUGACUGGG TTTCCTT
TOLLIP	gga-miR-6706-5p	83	0.64	AGGAGAAAUGGAGUGGGCUGAG T TTCTCC
MYD88	gga-miR-7442-5p	96	0.38	CACAGGACCAUGGGAGCGUGGC GTCCTGT
MAPK10	gga-miR-6562-5p	85	0.23	AGGGGAAAGGAAUGUGCUGUGG TTTCCCC
RIPK1	gga-miR-1687-5p	83	0.26	UGAGGAAAUGAGCCAGCUGAG TT TCCTC
TBK1	gga-miR-6633-5p	81	0.61	AGAGGAAACUAUGGCUGACUGU TTTCCTC
FADD	gga-miR-1612	97	5.58	GAAGGAAAAGGAGCUGACUGGG TTTCCTT
TAB2	gga-miR-1625-3p	89	0.12	GCAGCAGAAUAUCCCUGCCAUU TCTGCTG
MAP3K7	gga-miR-9-3p	90	0.24	UAAAGCUAGAGAACCGAAUGU TAGCTTT
MAPK14	gga-miR-6639-5p	82	0.21	UACAGAACUUCGGCAUGAUUGCU GTTCTG T
MAPK13	gga-miR-1599	82	0.18	GGAGGGAGGAAAAAAAAAA CT CCCTC
MAPK8	gga-miR-107-3p	99	0.04	AGCAGCAUUGUACAGGGCUAUCA ATGC TGC
МАРК8	gga-miR-103-3p	99	0.04	AGCAGCAUUGUACAGGGCUAUGA ATGC TGC

Table 4. List of final miRNAs predicted binding to TLR pathway

immune evasion may provide significant clues for detecting novel drug targets in inflammatory and autoimmune diseases, as well as infections [19, 20].

In this regard, the use of computational approaches not only speeds up the process of identifying miRNAs but also reduces the search space to more likely miRNAs that can be experimentally validated by biologists in a lab [14]. Our study presents the first comprehensive view of miRNAs associated with the TLR-signaling pathway in chicken. The results of the analysis identified both genes AKT serine/threonine kinase 3 (AKT3) and Fas Associated via Death Domain (FADD) as the targets for the gga-miR-1612 that received high scores in both miRDB and miRmap programs.

Figure 1. The fine-tuning of the TLR-signaling pathways of chicken by miRNAs and side effects may occur due to the high expression of these genes

With an in-depth sequencing approach, Wang et al. (2009) identified differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection [21]. They reported that gga-miR-1612 was upregulated in AIV-infected chicken lungs, while it was explicitly expressed in the tracheae of non-infected ones. They also remarked the different regulation of gga-miR-1612 between lung and trachea and suggested that it might be various mechanisms in response to AIV infection between tissues.

The gga-miR-16-5p and gga-miR-196-1-3p respectively control the LOC100858824 (manufacturer of TLR4) and PIK3CD genes; therefore, they have the same seed (accession number of miRBase; respectively MIMAT0001116 and MIMAT0031017). So, this miRNA with high probability can influence two genes. Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta (PIK3CD) is a protein-coding gene that is involved in the immune response.

Li et al. (2017) investigated splenic miRNA expression profiles in host responses to Salmonella Enteritidis infection in chickens [22]. They reported that the relative expression of innate/inflammatory marker genes such as PIK3CD was significantly upregulated following Salmonella Enteritidis infection. The gga-miR-1687-5p influence on 3-UTR of RIPK1 gene as well as gga-miR- 6633-5p influence on TBK1 has the same seed, so the presence of any of these miRNAs increases the possibility of inhibition of another gene.

Overexpression of LOC100858824, TOLLIP, or FADD can lead to apoptosis. Overexpression of MYD88, TAB2, RIPK1, and MAP3K7 leads to degradation, and overexpression of TBK1 leads to the antiviral effects. Also, overexpression of PIK3CD, PIK3CB, PIK3R5, PIK3R1, and AKT3 leads to inflammation effect (Figure 1).

Also, results show that gga-miR-107-3p and gga-miR-103-3P can control the position of 379 in the 3'-UTR MAPK8 gene. Li et al. (2017) showed that the expression patterns of gga-miR-103-3p were significantly different between the chicken group with Salmonella Enteritidis infection and non-infected group [22]. Their results showed that LRRC59 is a potential target of ggamiR-103-3p. Although little is known about the function of LRRC59, this family of proteins could have far-reaching effects on the immune response.

A recent study revealed that LRRC59-dependent trafficking of nucleic acid-sensing TLRs might be beneficial for augmentation of antimicrobial immune responses from the endoplasmic reticulum via association with uncoordinated 93 homolog B1. The seed sequence in the

two miRNAs is similar, but there is a difference in the structure of their hairpin.

Mature gga-miR-103-3p (Acc: MIMAT0001145) is in the position 51 to 73 of hairpin structure, and the guanine base is in position 72, while mature gga-miR-107-3p (Acc: MIMAT0001147) is in position 50 to 72 of hairpin structure and position 71 is cytosine base. Although the bioinformatic methods for the prediction of miRNA are perfectible, it needs subsequent experimental validation. Moreover, as newly identified regulators, the performance mechanism of miRNAs in combination with other regulatory mechanisms will control the outcome of immune responses and these issues should be investigated in future studies.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles were considered in this article.

Funding

This work was financialy supported by Department of Agricultural Sciences and Natural Resources, University of Khuzestan, Ahvaz, Iran.

Authors contribution's

Design, data analysis and performing all of the experiments: Maryam Gholizadeh; Design, supervision, critically revised the manuscript for intellectual content: Jamal Fayazi; Data analysis assist and error checking: Somayeh RahimNahal; All authors reviewed and approved the final version of the manuscript.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgements

We express our gratitude to the Department of Agricultural Sciences and Natural Resources, of University of Khuzestan and the anonymous reviewers for their advice for improving paper quality.

References

[1] Cui J, Gao Y, Chu Q, Bi D, Xu T. miRNA-8159 is involved in TLR signaling pathway regulation after pathogen infection by direct targeting TLR13 in miiuy croaker. Fish Shellfish Immunol. 2017; 66:531-9. [DOI:10.1016/j.fsi.2017.05.046] [PMID]

- [2] Dannemann M, Nickel B, Lizano E, Burbano HA, Kelso J. Annotation of primate miRNAs by high throughput sequencing of small RNA libraries. BMC Genomics. 2012; 13:116. [DOI:10.1186/1471-2164-13-116] [PMID] [PMCID]
- [3] Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011; 8(4):376-88. [DOI:10.1016/j.stem.2011.03.001] [PMID] [PMCID]
- [4] Heinrich EM, Dimmeler S. MicroRNAs and stem cells: Control of pluripotency, reprogramming, and lineage commitment. Circ Res. 2012; 110(7):1014-22. [DOI:10.1161/CIRCRESA-HA.111.243394] [PMID]
- [5] Quinn SR, O'Neill LA. A trio of microRNAs that control Toll-like receptor signalling. Int Immunol. 2011; 23(7):421-5. [DOI:10.1093/intimm/dxr034] [PMID]
- [6] Vejnar CE, Blum M, Zdobnov EM. miRmap web: Comprehensive microRNA target prediction online. Nucleic Acids Res. 2013; 41(Web Server issue):W165-8. [DOI:10.1093/nar/gkt430] [PMID] [PMCID]
- [7] Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD. MicroRNAs: New regulators of immune cell development and function. Nat Immunol. 2008; 9(8):839-45. [DOI:10.1038/ ni.f.209] [PMID]
- [8] Wang X. miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA. 2008; 14(6):1012-7. [DOI:10.1261/rna.965408] [PMID] [PMCID]
- [9] Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW. Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss. BMC Genomics. 2008; 9:62. [DOI:10.1186/1471-2164-9-62] [PMID] [PMCID]
- [10] Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007; 39(10):1278-84. [DOI:10.1038/ng2135] [PMID]
- [11] Chandra V, Girijadevi R, Nair AS, Pillai SS, Pillai RM. MTar: A computational microRNA target prediction architecture for human transcriptome. BMC Bioinformatics. 2010; 11(Suppl 1):S2. [DOI:10.1186/1471-2105-11-S1-S2] [PMID] [PMCID]
- [12] Fukui A, Inoue N, Matsumoto M, Nomura M, Yamada K, Matsuda Y, et al. Molecular cloning and functional characterization of chicken toll-like receptors: A single chicken toll covers multiple molecular patterns. J Biol Chem. 2001; 276(50):47143-9. [DOI:10.1074/jbc.M103902200] [PMID]
- [13] Gruber AR, Fallmann J, Kratochvill F, Kovarik P, Hofacker IL. AREsite: A database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res. 2011; 39(Database issue):D66-9. [DOI:10.1093/nar/gkq990] [PMID] [PMCID]
- [14] Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009; 136(4):642-55. [DOI:10.1016/j. cell.2009.01.035] [PMID] [PMCID]
- [15] Bandyopadhyay S, Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics. 2009; 25(20):2625-31. [DOI:10.1093/bioinformatics/btp503] [PMID]
- [16] Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, et al. Birth and expression evolution of mammalian microRNA genes. Genome Res. 2013; 23(1):34-45. [DOI:10.1101/gr.140269.112] [PMID] [PMCID]

- [17] Jiang L, Shen Y, Zheng K, Li J. Rapid and multiplex microRNA detection on graphically encoded silica suspension array. Biosens Bioelectron. 2014; 61:222-6. [DOI:10.1016/j.bios.2014.05.020] [PMID]
- [18] He X, Jing Z, Cheng G. MicroRNAs: New regulators of Tolllike receptor signalling pathways. Biomed Res Int. 2014; 2014:945169. [DOI:10.1155/2014/945169] [PMID] [PMCID]
- [19] Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011; 12(12):846-60. [DOI:10.1038/ nrg3079] [PMID]
- [20] Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010; 466(7308):835-40. [DOI:10.1038/nature09267] [PMID] [PMCID]
- [21] Wang Y, Brahmakshatriya V, Zhu H, Lupiani B, Reddy SM, Yoon BJ, et al. Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics. 2009; 10:512. [DOI:10.1186/1471-2164-10-512] [PMID] [PMCID]
- [22] Li P, Fan W, Li Q, Wang J, Liu R, Everaert N, et al. Splenic microRNA expression profiles and integration analyses involved in host responses to salmonella enteritidis infection in chickens. Front Cell Infect Microbiol. 2017; 7:377. [DOI:10.3389/ fcimb.2017.00377] [PMID] [PMCID]