Volume 5, Issue 3 (Aug 2017)                   Res Mol Med (RMM) 2017, 5(3): 5-10 | Back to browse issues page


XML Print


1- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
2- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
3- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran , asgarianhossein@yahoo.com
Abstract:   (4579 Views)
Background: PPreviously, it was shown that exhausted CD4+ and CD8+ T cells in chronic lymphocytic leukemia (CLL) co-express the two immune-inhibitory receptors, Tim-3 and PD-1. Present study investigated the expression of Blimp-1, a transcription factor involved in T cell exhaustion, in patients with CLL.
Materials and Methods: Peripheral blood mononuclear cells were collected from 25 untreated CLL patients and 15 sex- and age-matched normal subjects. CLL patients were clinically classified according to the Rai staging system. The relative expression of Blimp-1 mRNA was determined by quantitative Real Time Polymerase Chain Reaction (qRT-PCR) after normalization with β-actin.
Results: Expression of Blimp-1 mRNA was much higher in CLL patients than in normal controls (p=0.001). Moreover, Blimp-1 was more expressed in patients with advanced clinical stages of CLL compared to those with early stages of the disease (p=0.01). Interestingly, the Blimp-1 expression was correlated with the frequencies of exhausted Tim-3+/PD-1+/CD4+ and Tim-3+/PD-1+/CD8+ T cells in CLL patients.
Conclusion: Our results highlight the role of Blimp-1 transcription factor in T cell exhaustion of CLL.
 
Full-Text [PDF 608 kb]   (1820 Downloads)    
Type of Study: Research | Subject: Immunology
Published: 2017/12/16

References
1. Diefenbach A, Raulet DH. The innate immune response to tumors and its role in the induction of T‐cell immunity. Immunol Rev. 2002; 188(1):9-21. PMID: 12445277 [DOI:10.1034/j.1600-065X.2002.18802.x]
2. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006; 6(10):715. PMID: 16977338 [DOI:10.1038/nri1936]
3. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007; 117(5):1137. PMID: 17476343 [DOI:10.1172/JCI31405]
4. Patil S, Rao RS, Majumdar B. T-cell Exhaustion and Cancer Immunotherapy. Journal of international oral health: JIOH. 2015; 7(8):i-ii. PMID: 26464560
5. Hallek M. Chronic lymphocytic leukemia: 2015 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2015; 90(5):446-60. PMID: 25908509 [DOI:10.1002/ajh.23979]
6. Hallek M, Pflug N. Chronic lymphocytic leukemia. Ann Oncol. 2010; 21(suppl 7): vii154-64. PMID: 20943609 [DOI:10.1093/annonc/mdq373]
7. Herishanu Y, Polliack A. Chronic lymphocytic leukemia: a review of some new aspects of the biology, factors influencing prognosis and therapeutic options. Transfus Apher Sci. 2005; 32(1):85-97. PMID: 15737877 [DOI:10.1016/j.transci.2004.10.012]
8. Catovsky D, Miliani E, Okos A, Galton D. Clinical significance of T-cells in chronic lymphocytic leukaemia. Lancet. 1974; 304(7883):751-2. PMID: 4143015 [DOI:10.1016/S0140-6736(74)90944-1]
9. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013; 121(9):1612-21. PMID: 23247726 [DOI:10.1182/blood-2012-09-457531]
10. Wherry EJ. T cell exhaustion. Nat Immunol. 2011; 12(6):492-9. PMID: 21739672 [DOI:10.1038/ni.2035]
11. Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity. 2012; 37(6):1130-44. PMID: 23159438 [DOI:10.1016/j.immuni.2012.08.021]
12. Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014; 35(2):51-60. PMID: 24210163 [DOI:10.1016/j.it.2013.10.001]
13. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009; 10(1):29-37. PMID: 19043418 [DOI:10.1038/ni.1679]
14. Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE, et al. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity. 2014; 40(2):289-302. PMID: 24530057 [DOI:10.1016/j.immuni.2014.01.005]
15. Wherry EJ, Ha S-J, Kaech SM, Haining WN, Sarkar S, Kalia V, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007; 27(4):670-84. PMID: 17950003 [DOI:10.1016/j.immuni.2007.09.006]
16. Yi JS, Cox MA, Zajac AJ. T‐cell exhaustion: characteristics, causes and conversion. Immunology. 2010; 129(4):474-81. PMID: 20201977 [DOI:10.1111/j.1365-2567.2010.03255.x]
17. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006; 443(7109):350-4. PMID: 16921384 [DOI:10.1038/nature05115]
18. Turner CA, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell. 1994; 77(2):297-306. PMID: 8168136 [DOI:10.1016/0092-8674(94)90321-2]
19. Shaffer A, Lin K-I, Kuo TC, Yu X, Hurt EM, Rosenwald A, et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 2002; 17(1):51-62. PMID: 12150891 [DOI:10.1016/S1074-7613(02)00335-7]
20. Shapiro-Shelef M, Lin K-I, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG, Calame K. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 2003; 19(4):607-20. PMID: 14563324 [DOI:10.1016/S1074-7613(03)00267-X]
21. Kallies A, Xin A, Belz GT, Nutt SL. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity. 2009; 31(2):283-95. PMID: 19664942 [DOI:10.1016/j.immuni.2009.06.021]
22. Rutishauser RL, Martins GA, Kalachikov S, Chandele A, Parish IA, Meffre E, et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity. 2009; 31(2):296-308. PMID: 19664941 [DOI:10.1016/j.immuni.2009.05.014]
23. Taghiloo S, Allahmoradi E, Tehrani M, Hossein-Nataj H, Shekarriz R, Janbabaei G, et al. Frequency and functional characterization of exhausted CD8+ T cells in chronic lymphocytic leukemia. Eur J Haematol. 2017; 98(6):622-31. PMID: 28306177. [DOI:10.1111/ejh.12880]
24. Taghiloo S, Allahmoradi E, Ebadi R, Tehrani M, Hosseini-Khah Z, Janbabai G, et al. Upregulation of Galectin-9 and PD-L1 Immune Checkpoints Molecules in Patients with Chronic Lymphocytic Leukemia. Asian Pac J Cancer Prev. 2017; 18(8):2269-74. PMID: 28843266
25. Shin H, Wherry EJ. CD8 T cell dysfunction during chronic viral infection. Curr Opin Immunol. 2007; 19(4):408-15. PMID: 17656078 [DOI:10.1016/j.coi.2007.06.004]
26. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010; 207(10):2187-94. PMID: 20819927 [DOI:10.1084/jem.20100643]
27. Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH. Reinvigorating exhausted HIV-specific T cells via PD-1–PD-1 ligand blockade. J Exp Med. 2006; 203(10):2223-7. PMID: 17000870 [DOI:10.1084/jem.20061800]
28. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007; 8(3):239-45. PMID: 17304234 [DOI:10.1038/ni1443]
29. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015; 15(8):486. PMID: 26205583 [DOI:10.1038/nri3862]
30. Mognol GP, Spreafico R, Wong V, Scott-Browne JP, Togher S, Hoffmann A, et al. Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells. Proc Natl Acad Sci U S A. 2017; 114(13):E2776-E85. PMID: 28283662 [DOI:10.1073/pnas.1620498114]
31. Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F, Pipkin ME, et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity. 2015; 42(2):265-78. PMID: 25680272 [DOI:10.1016/j.immuni.2015.01.006]
32. Blackburn SD, Shin H, Freeman GJ, Wherry EJ. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc Natl Acad Sci U S A. 2008; 105(39):15016-21. PMID: 18809920 [DOI:10.1073/pnas.0801497105]
33. Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE, et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science. 2012; 338(6111):1220-5. PMID: 23197535 [DOI:10.1126/science.1229620]
34. Pereira RM, Hogan PG, Rao A, Martinez GJ. Transcriptional and epigenetic regulation of T cell hyporesponsiveness. J Leukoc Biol. 2017: 102(3):601-615. PMID: 28606939 [DOI:10.1189/jlb.2RI0317-097R]
35. Shin H, Blackburn SD, Intlekofer AM, Kao C, Angelosanto JM, Reiner SL, et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity. 2009; 31(2):309-20. PMID: 19664943 [DOI:10.1016/j.immuni.2009.06.019]
36. Lu P, Youngblood BA, Austin JW, Mohammed AUR, Butler R, Ahmed R, et al. Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. Journal Exp Med. 2014; 211(3):515-27. PMID: 24590765 [DOI:10.1084/jem.20130208]
37. Hwang S, Cobb DA, Bhadra R, Youngblood B, Khan IA. Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med. 2016; 213(9):1799-818. PMID: 27481131 [DOI:10.1084/jem.20151995]
38. Angelosanto JM, Wherry EJ. Transcription factor regulation of CD8+ T‐cell memory and exhaustion. Immunol Rev. 2010; 236(1):167-75. PMID: 20636816 [DOI:10.1111/j.1600-065X.2010.00927.x]
39. Zhu L, Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, et al. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J Hematol Oncol. 2017; 10(1):124. PMID: 28629373 [DOI:10.1186/s13045-017-0486-z]
40. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011; 117(17):4501-10. 21385853

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.