Volume 5, Issue 3 (Aug 2017)                   Res Mol Med (RMM) 2017, 5(3): 37-40 | Back to browse issues page

XML Print

1- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran.
2- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran. , zeinoddini@modares.ac.ir
Abstract:   (3319 Views)
Background: Zot (Zonula occludens toxin) is one of the secretion toxins of Vibrio cholerae in small intestine that binds to certain receptors in the epithelial cells and causes a change in the structure of tight junction. The purpose of this research is rapid detection of zot enterotoxin gene using PCR.
Materials and Methods: The genomic DNA was extracted by DNA isolation kit and gene amplification was carried out by the zot gene-specific primers. Then, PCR products were investigated by electrophoresis on 1.2% agarose gel stained by ethidium bromide. Also, the specificity of primers was measured using bacterial samples other than V. cholerae, such as enterotoxigenic Escherichia coli )ETEC(, Salmonela. typhi and Aeromonas hydrophila. The sensitivity of the PCR reaction was also evaluated using serial dilutions of V. cholerae O1 concentration (cfu/ml).
Results: The data showed that the designed primers specificity for zot gene was successful and the sensitivity of this method was determined about 142 cfu/ml.
Conclusion: In conclusion, this molecular detection can be used as a simple diagnostic kit in clinical laboratories for identification of V. cholerae.
Full-Text [PDF 358 kb]   (1063 Downloads)    
Type of Study: Research | Subject: Molecular biology
Received: 2017/10/8 | Accepted: 2017/12/24 | Published: 2017/12/24

1. 1. Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev. 1998; 62(4):1301-14. PMID: 9841673
2. Vivian Joseph Ratnam P, Sundararaj T, Rajkumar S. Genotyping of Vibrio cholerae strains based on the cholera toxin and virulence associated genes. Med Sci. 2015; 5(7): 197-99.
3. Chua AL, Elina HT, Lim BH, Yean CY, Ravichandran M, Lalitha P. Development of a dry reagent-based triplex PCR for the detection of toxigenic and non-toxigenic Vibrio cholerae. J Med Microbiol. 2011; 60(4):481-5. PMID: 21183596 [DOI:10.1099/jmm.0.027433-0]
4. Brumfield KD, Carignan BM, Ray JN, Jumpre PE, Son MS. Laboratory techniques used to maintain and differentiate biotypes of Vibrio cholerae clinical and environmental isolates. J Vis Exp. 2017; 30(123):e55760. PMID: 28605374 [DOI:10.3791/55760]
5. Israil A, Balotescu C, Damian M, Dinu C, Bucurenci N. Comparative study of different methods for detection of toxic and other enzymatic factors in Vibrio cholerae strains. Roum Arch Microbiol Immunol. 2004; 63(1-2):63-77. PMID: 16295321
6. Zeinoddini M, Saeedinia AR, Sadeghi V, Shamsara M, Hajia M, Rahbar M. Simple and accurate detection of Vibrio cholera using triplex dot blotting assay. Biomacromol J. 2015; 1(1):52-7.
7. Zeinoddini M, Saeedinia AR, Sadeghi V. Rapid detection of Vibrio cholera using hexaplex PCR assay. Police Med. 2014; 3(2): 77-84.
8. Kaper JB, Morris JG, Lerine MM, Cholera. Clin Microbiol Rev. 1995; 8 (1) 48-86.
9. Yamazaki W, Seto K, Taguchi M, Ishibashi M, Inoue K. Sensitive and rapid detection of cholera toxin-producing Vibrio cholerae using a loop-mediated isothermal amplification. BMC Microbiol. 2008; 8(1):94. https://doi.org/10.1186/1471-2180-8-163 [DOI:10.1186/1471-2180-8-94]
10. Alam M, Sultana M, Nair GB, Siddique AK, Hasan NA, et al. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci U S A. 2007; 104(45):17801-6. PMID: 17968017 [DOI:10.1073/pnas.0705599104]
11. Aulet O, Silva C, Fraga SG, Pichel M, Cangemi R, Gaudioso C, et al. Detection of viable and viable nonculturable Vibrio cholerae O1 through cultures and immunofluorescence in the Tucumán rivers, Argentina. Rev Soc Bras Med Trop. 2007; 40(4):385-90. PMID: 17876456 [DOI:10.1590/S0037-86822007000400002]
12. Karasawa T, Mihara T, Kurazono H, Nair GB, Garg S, Ramamurthy T, et al. Distribution of the zot (zonula occludens toxin) gene among strains of Vibrio cholerae O1 and non-01. FEMS Microbiol lett. 1993; 106(2):143-5. PMID: 8454179 [DOI:10.1111/j.1574-6968.1993.tb05950.x]
13. Baudry B, Fasano A, Ketley J, Kaper JB. Cloning of a gene (zot) encoding a new toxin produced by Vibrio cholerae. Infect Immun. 1992; 60(2):428-34. PMID: 1730472
14. Barzamini B, Moghbeli M, Arbab Soleimani N. Vibrio cholerae detection in water and wastewater by polymerase chain reaction assay. Int J Enteric Pathog. 2014; 2(4):1-4. [DOI:10.17795/ijep20997]
15. Mehrabadi JF, Morsali P, Nejad HR, Fooladi AA. Detection of toxigenic Vibrio cholerae with new multiplex PCR. J Infect Public Health. 2012; 5(3):263-7. PMID: 22632601 [DOI:10.1016/j.jiph.2012.02.004]
16. Herfehdoost GR, Kamali M, Javadi HR, Zolfagary D, Choopani A, Ghasemi B, et al. Rapid detection of Vibrio Cholerae by polymerase chain reaction based on nanotechnology method. J Appl Biotechnol Rep. 2014; 1(2): pp-59.
17. Bielawska-Drózd A, Mirski T, Bartoszcze M, Cieślik P, Roszkowiak A, Michalski A. Development of real-time PCR assay for detection of Vibrio cholerae. Pol J Environ Stud. 2012; 21(2).
18. Fields PI, Popovic T, Wachsmuth K, Olsvik Ø. Use of polymerase chain reaction for detection of toxigenic Vibrio cholerae O1 strains from the Latin American cholera epidemic. J Clin Microbiol. 1992; 30(8):2118-21. PMID: 1500520
19. Koonin EV. The second cholera toxin, Zot, and its plasmid-encoded and phage-encoded homologues constitute a group of putative ATPases with an altered purine NTP-binding motif. FEBS lett. 1992; 312(1):3-6. PMID: 1426234 [DOI:10.1016/0014-5793(92)81398-6]
20. Raja N, Shamsudin MN, Somarny W, Rosli R, Rahim RA, Radu S. Detection and molecular characterization of the zot gene in Vibrio cholerae and V. alginolyticus isolates. Southeast Asian J Trop Med Public Health. 2001; 32(1):100-4. PMID: 11485069
21. Fasano A, Uzzau S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest. 1997; 99(6):1158. PMID: 9077522 [DOI:10.1172/JCI119271]