
93

Arvin Amiri1 , Maryam Janbazi1 , Seyedeh Rose Jamali2 , Simin Ehsani Vostacolaee3 , Sakineh Shafia4* 

1. Department of Veterinary Medicine, Ba.C., Islamic Azad University, Babol, Iran.
2. Department of Biology, Ba.C., Islamic Azad University, Babol, Iran. 
3. Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
4. Department of Physiology, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.

* Corresponding Author:
Sakineh Shafia, Associate Professor.
Address: Department of Physiology, Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Phone: +98 (911) 3554759
E-mail: srshafia@yahoo.com

Impact of Physical Exercise on Behavioral Functions 
and Neurotrophic Factors on Ovariectomized Rats 
Exposed to SPS

Background: Post-traumatic stress disorder (PTSD) is a severe psychiatric condition associated with 
anxiety, cognitive deficits, and neurobiological changes. Estrogen deficiency occurs after ovariectomy 
(OVX) or menopause, exacerbating PTSD symptoms and limiting treatment options. Physical 
exercise has emerged as a non-pharmacological intervention with neuroprotective effects, but its 
efficacy under estrogen-deficient conditions remains unclear. This study aimed to evaluate the effects 
of moderate-intensity forced running wheel (FRW) exercise on PTSD-like behaviors, recognition 
memory, and neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and insulin-like 
growth factor 1 (IGF-1) in the hippocampus and prefrontal cortex of ovariectomized rats exposed to 
single prolonged stress (SPS) as a model of PTSD.
Materials and Methods: Adult female Wistar rats (n=7 per group) were allocated to eight groups in a 
2×2×2 factorial design based on ovarian status (sham vs OVX), stress exposure (no stress vs SPS), and 
physical activity (sedentary vs FRW). FRW was performed 30 min/day, 5 days/week for 4 weeks at 10 m/
min (~60% VO2max), indicating moderate intensity. Anxiety-like behaviours (% open arm time [OAT], % 
open arm entry [OAE]) and recognition memory (discrimination index (DI) were assessed using standard 
behavioural tests. ELISA was used to measure BDNF and IGF-1 levels in the hippocampus and prefrontal 
cortex (PFC). Data (Mean±SEM) were analyzed using a three-way ANOVA (OVX × SPS × Exercise) 
with the Tukey’s post-hoc test; the assumptions of normality and homogeneity were verified. Partial η² and 
Cohen’s d were reported for omnibus and key pairwise comparisons, respectively (α=0.05, two-tailed).

Results: SPS exposure significantly increased anxiety-like behaviors and impaired recognition 
memory in both control and ovariectomized rats. FRW exercise ameliorated anxiety and memory 
deficits and elevated BDNF and IGF-1 levels in control animals under both SPS and non-SPS 
conditions. However, in ovariectomized rats, the beneficial effects of exercise were confined mainly 
to non-SPS groups, with limited improvements observed in ovariectomized rats subjected to SPS. 
Estrogen deficiency diminished the neuroprotective and behavioral benefits of exercise under stress.

Conclusion: Moderate-intensity FRW exercise effectively mitigates PTSD-related behavioral and 
neurochemical deficits in rats with normal ovarian hormone levels. Still, its efficacy is substantially 
reduced under estrogen-deficient conditions. These findings highlight the importance of hormonal 
status in determining the therapeutic potential of exercise for PTSD. Although the SPS model provides 
valuable insights into PTSD-like symptoms, it does not fully replicate the complexity of human 
PTSD; therefore, extrapolation to clinical settings should be approached with caution. Combined 
interventions, including hormonal support, may be more effective for post-menopausal populations.
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Introduction

ost-traumatic stress disorder (PTSD) is a 
debilitating psychiatric condition that de-
velops following exposure to traumatic 
events [1, 2]. It is characterized by persis-
tent anxiety, impaired cognitive functions, 

dysregulation of HPA-axis function, and neuroinflamma-
tion [3, 4]. This disorder affects multiple brain regions, no-
tably the hippocampus and prefrontal cortex (PFC), areas 
critically involved in regulating anxiety, memory process-
ing, and stress response mechanisms [5, 6].

Animal models, such as single prolonged stress (SPS), 
have been widely utilized to mimic PTSD in laboratory 
settings [7]. The SPS model effectively reproduces be-
havioral symptoms such as anxiety, impaired cognition, 
neurochemical changes, and reduced levels of neuro-
trophic factors seen in PTSD patients [8-10]. Specifi-
cally, reduced levels of brain-derived neurotrophic factor 
(BDNF) and insulin-like growth factor-1 (IGF-1) in the 
hippocampus and PFC have been consistently reported 
following SPS exposure, suggesting their crucial roles in 
the neurobiological underpinnings of PTSD [8, 11-14].

Estrogen and other ovarian hormones have a significant 
influence on cognitive functions, emotional responses, 
and neuronal plasticity [15-17]. Estrogen deprivation, 
as occurs naturally during menopause or artificially via 
ovariectomy (OVX), exacerbates anxiety-like behaviors 
and cognitive deficits [15, 16, 18]. Studies suggest that 
reduced estrogen levels might potentiate the severity 
of PTSD symptoms [19, 20], complicating its clinical 
management, particularly in postmenopausal women or 
ovariectomized animal models [17, 21, 22].

Physical exercise is a non-pharmacological, safe, and 
cost-effective intervention extensively studied for its 
neuroprotective effects against stress-induced psychiat-
ric disorders, including PTSD [1, 23, 24]. Exercise pro-
motes neurogenesis, synaptic plasticity, and cognitive 
resilience, partly mediated by increasing neurotrophic 
factors, such as BDNF and IGF-1, in brain regions asso-
ciated with stress and memory [25-27]. Among various 
exercise paradigms, forced running wheel (FRW) exer-
cise has emerged as an effective method for mitigating 
anxiety-like behaviors and cognitive impairment in ro-
dents [8, 28-30]. While multiple studies have confirmed 
the neuroprotective effects of exercise in intact rodents, 
including improved cognition and elevated levels of 
BDNF and IGF-1, findings in ovariectomized models 
have been inconsistent [31-33]. Some studies have re-

ported blunted or absent responses to exercise in OVX 
animals, especially under stress conditions [11, 34-36].

However, evidence regarding the effectiveness of FRW, 
specifically in ovariectomized animals under PTSD-like 
conditions, remains limited. These conflicting reports 
indicate that estrogen status may play a crucial role in 
determining the effectiveness of exercise interventions 
[8, 17]. Still, few studies have directly explored this in-
teraction in PTSD models, leaving a significant gap in 
understanding how estrogen deficiency and traumatic 
stress together influence exercise responsiveness [3, 23].

Therefore, this study aimed to investigate the effects 
of moderate-intensity FRW exercise on anxiety-like 
behaviors, cognitive memory performance, and neu-
rotrophic factor levels (BDNF and IGF-1) in the hip-
pocampus and PFC of ovariectomized rats exposed to 
SPS-induced PTSD. Given the modulatory role of estro-
gen on neurotrophic signaling and emotional regulation, 
postmenopausal women may require tailored interven-
tions that combine physical exercise with hormonal or 
pharmacological support to manage PTSD symptoms 
effectively [21, 37]. We hypothesized that moderate-
intensity FRW exercise would attenuate behavioral im-
pairments and enhance neurotrophic factor expression, 
potentially moderated by estrogen status, thus providing 
insights into tailored therapeutic strategies for PTSD in 
post-menopausal conditions.

Materials and Methods

Experimental animals

A total of 56 female Wistar rats from the animal house 
of Mazandaran University of Medical Science, Sari, 
Iran, initially weighing 200-250 g, were used in this 
study. Throughout the study, all rats, except for the con-
trol group rats whose ovaries were not removed, were 
housed individually in separate polycarbonate cages. In 
contrast, the control group rats, whose ovaries were not 
removed, were housed collectively, with eight rats per 
cage, in a large Plexiglas enclosure. All animals were 
kept in a temperature-controlled animal facility (24±1 
°C) under a standard 12-hour light/dark cycle with free 
access to water and food. The rats were randomly allo-
cated to one of the eight experimental groups (n=7 per 
group):

1. Control + None-SPS + Sedentary (CON/NSPS-
SED)

2. Control + None-SPS + Exercise (CON/NSPS-EXC)
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3. Control + SPS + Sedentary (CON/SPS-SED)

4. Control + SPS + Exercise (CON/SPS-EXC)

5. Ovariectomized + None-SPS + Sedentary (OVX/
NSPS-SED)

6. Ovariectomized + None-SPS + Exercise (OVX/
NSPS-EXC)

7. Ovariectomized + SPS + Sedentary (OVX/SPS-
SED)

8. Ovariectomized + SPS + Exercise (OVX/SPS-EXC)

The experimental timeline involved OVX (for OVX 
groups) followed by a 20-day recovery period. Subse-
quently, SPS or sham procedures were administered. Af-
ter 7 days post-SPS, the exercise or sedentary conditions 
commenced and lasted for 4 weeks. Behavioral tests 
were conducted after the intervention period, followed 
by euthanasia and tissue collection.

OVX procedure

After administering deep anesthesia with an intraperi-
toneal injection of ketamine (100 mg/kg) and xylazine 
(2.5 mg/kg) and disinfecting the site, a small incision 
was made in the lateral abdominal wall on both sides 
to remove the ovaries. The skin and muscle layers were 
then sutured. In the sham group, after making the inci-
sion and observing the ovaries, the skin and muscle lay-
ers were sutured without damaging the ovaries. Twenty 
days were allocated for surgical recovery and the clear-
ance of endogenous ovarian hormones [11]. The sham 
groups underwent placebo surgery without OVX, and 
the OVX groups underwent OVX surgery [11].

SPS protocol

SPS, as a model of PTSD, was conducted in three stag-
es: Restraining for two hours, forced swimming for 20 
min, and anesthetizing by ether. The size of the restrainer 
should be appropriate for the animal that is restrained. 
After being restrained, animals were kept individually in 
Plexiglas cages. Then, the rats were forced to swim for 20 
minutes in a cylindrical container (240 mm in diameter, 
500 mm in height) filled to two-thirds of its height with 
water maintained at 23±1 °C. After a 15-minute recov-
ery period, the animals were briefly exposed to diethyl 
ether for anesthesia, following the laboratory’s approved 
protocol [38, 39]. Thereafter, the rats were maintained 
in their cages for 14 days [40]. Although diethyl ether is 
less commonly used in modern settings, it was applied 

here under controlled conditions to ensure rapid seda-
tion. All procedures were approved by the institutional 
ethics committee and conducted under national guide-
lines to minimize animal suffering [41].

FRW exercise

Fourteen days after SPS, rats were habituated to the 
FRW apparatus in order to decrease stress. For habitu-
ation to the FRW, rats walked on the FRW at the lowest 
speed (3 m/min) for 15 min for 3 days. After habituation, 
moderate exercise was initiated for the exercise groups. 
The animals ran in aFRW at a speed of 10 m/min for 
30 minutes, five days per week, for four weeks [29, 42]. 
Rats that refused to walk in the FRW were excluded and 
replaced with new animals. Rats in sedentary groups 
were placed in the switched-off FRW for 5 min once a 
day [30, 43].

Based on previous studies, a running speed of 10 m/
min has been classified as moderate-intensity exercise 
in female Wistar rats, as it approximately corresponds 
to 60% of their maximal oxygen uptake (VO2max) or 
maximal lactate steady state (MLSS) [29, 30]. 

Elevated plus maze (EPM) test

The EPM test was used to assess anxiety-like behav-
ior in the rodent model one day after completing the 
treatment phase. The EPM consists of a plus-shaped ap-
paratus elevated 46 cm above the floor with four arms 
(51×10×40 cm each) and a central platform (10×10 cm). 
Each rat was individually placed in the central zone fac-
ing an open arm and allowed to explore for 5 minutes. 
The rats’ behavior in the EPM was recorded using a 
video camera (Borj Sanat Azma Co., Tehran, Iran) posi-
tioned 181 cm above the apparatus. Reduced time spent 
and entries into the open arms, along with increased time 
spent and entries into the closed arms, were analyzed as 
indicators of anxiety-related behaviors [1, 44]. 

Object recognition memory test (ORMT) 

Cognitive function, specifically recognition memory, 
was evaluated using the ORMT. The test was conducted 
in an open-field arena (e.g. 50×50×40 cm). The proce-
dure consisted of three phases: habituation, familiariza-
tion, and test.

First, in the habituation phase, each rat was allowed 
to explore the empty arena freely for 10 minutes. Then, 
during the familiarization phase, the animal was ex-
posed to two identical objects. After a defined delay, 
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one of the familiar objects is replaced with a novel one 
during the test phase. The animal’s tendency to explore 
the novel object is interpreted as a measure of recog-
nition memory. An increased exploration time for the 
novel object indicates the animal’s ability to retain and 
recall previous information.

Due to its simplicity and high sensitivity, this test is 
widely used in neuroscience research to evaluate the 
effects of drugs, stress, or behavioral interventions on 
memory function [1, 45, 46].

Measurement of BDNF and IGF-1 levels in the 
hippocampus and PFC

After behavioral tests, animals were deeply anesthe-
tized with ketamine and xylazine and humanely sacri-
ficed. The brains were immediately removed, and the 
hippocampus and PFC were rapidly dissected on ice. 
Tissue samples were snap-frozen in liquid nitrogen and 
stored at −80 °C until analysis.

For protein extraction, the frozen tissues were homog-
enized in ice-cold lysis buffer (prepared according to the 
kit instructions) using a tissue homogenizer at tempera-
tures below 4 °C. The homogenates were centrifuged at 
2,000 rpm for 20 minutes at 4 °C, and the resulting super-
natants were collected for the quantification of BDNF 
and IGF-1.

The concentrations of BDNF and IGF-1 in the hippo-
campal and PFC supernatants were determined using 
commercially available ELISA kits (ZellBio GmbH, 
Germany), following the manufacturer’s protocol. Ab-
sorbance was measured at the appropriate wavelength 
using a microplate reader, and concentrations were ex-
pressed as ng/mg protein according to the kit’s instruc-
tions. To normalize the results, the total protein content 
in the supernatants was determined using the Bradford 
assay [47].

Statistical analysis

After assessing the normality of data using the Kol-
mogorov-Smirnov test, descriptive data are presented 
as Mean±SEM. The three-way ANOVA (SPS × OVX 
× EXC) followed by Tukey’s post-hoc test was used to 
determine significant differences between groups. SPSS 
software, version 26 was used for data analysis, and a 
P<0.05 was considered the significance level.

Result 

Time spent in the open arm

Data on anxiety-like behaviors in the EPM are illus-
trated in Figures 1A and 1B.

A three-way ANOVA on the percentage of time spent 
in the open arm (Figure 1A) demonstrated significant 
main effects of SPS (F1, 48=128.759, P=0.0001), OVX 
(F1, 48=129.443, P=0.0001), and EXC (F1, 48=78.345, 
P=0.0001). 

Moreover, between-group comparisons indicated that, 
in control rats, exposure to SPS significantly reduced 
the percent of open arm time (%OAT) compared to 
the NSPS-SED group (P=0.0001). In this group, exer-
cise significantly increased %OAT in both the NSPS 
(P=0.0001) and SPS (P=0.0001) subgroups compared 
to their respective sedentary controls. Notably, the effect 
of exercise was significantly greater in the NSPS group 
than in the SPS group (P=0.0001).

In the ovariectomized groups, a significant reduction 
in %OAT was observed following SPS exposure com-
pared to the NSPS-SED group (P=0.028). Exercise sig-
nificantly increased %OAT only in the NSPS subgroup 
(P=0.0001), and the impact of exercise was more pro-
nounced in the NSPS group compared to the SPS group 
(P=0.0001). Furthermore, significant differences in 
%OAT were observed between all control groups and 
their corresponding ovariectomized groups.

Percentage of entries into the open arm 

A three-way ANOVA on the percentage of open arm 
entries (Figure 1B) demonstrated significant main effects 
of SPS (F1, 48=282.735, P=0.0001), OVX (F1, 48=140.425, 
P=0.0001), and EXC (F1, 48=107.268, P=0.0001). 

Moreover, between-group comparisons indicated that, 
in control rats, SPS exposure significantly reduced the 
percent of open arm entry (%OAE) compared to the 
NSPS-SED group (P=0.0001). In these groups, exercise 
significantly increased %OAE in both NSPS and SPS 
subgroups compared to their respective sedentary con-
trols (P=0.0001). Moreover, the effect of exercise was 
significantly greater in the NSPS group than in the SPS 
group (P=0.0001). In ovariectomized rats, OVX itself 
caused a significant reduction in %OAE in the NSPS-
SED group compared to the control group (P=0.0001). 
SPS exposure further decreased %OAE compared to the 
NSPS-SED group (P=0.0001). In these animals, exercise 
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Figure 1. Effect of FRW exercise on (anxiety-like behaviors) ovariectomized SPS rats
A) Effect of FRW exercise on (anxiety-like behaviors) percentage of time spent in the open arm ovariectomized SPS rats
*Significant difference vs the CON/NSPS-SED group (P=0.0001), **Significant difference vs the CON/SPS-SED group 
(P=0.0001), ***Significant difference vs the CON/NSPS-EXC group (P=0.0001), & and & Significant difference vs the OVX/NSPS-
SED group (P=0.0001, and P=0.028), && Significant difference vs the OVX/NSPS-EXC group (P=0.0001).

 

B) Effect of FRW exercise on (anxiety-like behaviors) percentage of open arm entries in ovariectomized SPS rats
*Significant difference vs the CON/NSPS-SED group (P=0.0001), **Significant difference vs the CON/SPS-SED group 
(P=0.0001), ***Significant difference vs the CON/NSPS-EXC group (P=0.0001), &Significant difference vs the OVX/NSPS-SED 
group (P=0.0001), &&Significant difference vs the OVX/NSPS-EXC group (P=0.001).
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significantly increased the %OAE only in the SPS sub-
group (P=0.0001). The beneficial effect of exercise was 
again more pronounced in the NSPS group than in the 
SPS group (P=0.001). Additionally, significant differ-
ences in %OAE were found between all control groups 
and their corresponding ovariectomized groups.

Effect of FRW on cognitive memory in healthy 
and ovariectomized rats with PTSD 

A three-way ANOVA on cognitive memory (Figure 
2) demonstrated significant main effects of SPS (F1, 

48=203.474, P=0.0001), OVX (F1, 48=89.093, P=0.0001), 
and EXC (F1, 48=93.433, P=0.0001), as well as a signifi-
cant interaction between SPS and OVX (F1, 48=4.244, 
P=0.045).

Moreover, between-group comparisons indicated that, 
in control rats, SPS exposure significantly reduced DI 
compared to the NSPS-SED group (P=0.0001). Exercise 
significantly increased DI in both the NSPS (P=0.0001) 
and SPS (P=0.002) subgroups relative to their respective 
sedentary controls. Notably, the effect of exercise was 
significantly greater in the NSPS group than in the SPS 
group (P=0.0001). 

In ovariectomized rats, OVX itself significantly re-
duced DI in the NSPS-SED group compared to the con-
trol group (P=0.0001). SPS exposure further decreased 

DI compared to the NSPS-SED group (P=0.0001). 
Exercise significantly increased DI in both the NSPS 
(P=0.0001) and SPS (P=0.003) subgroups compared to 
their sedentary counterparts. The positive impact of ex-
ercise was significantly more pronounced in the NSPS 
group than in the SPS group (P=0.0001). Additionally, 
significant differences in DI were observed between all 
control groups and their corresponding ovariectomized 
groups.

Effect of FRW on BDNF levels in the hippocam-
pus and PFC regions in healthy and ovariecto-
mized female rats with PTSD

A three-way ANOVA on hippocampal BDNF (Fig-
ure 3) demonstrated significant main effects of SPS 
(F1, 48=666.881, P=0.0001), OVX (F1, 48=186.507, 
P=0.0001), and EXC (F1, 48=154.170, P=0.0001), as well 
as significant interactions between SPS and OVX (F1, 

48=64.030, P=0.0001) and between SPS, OVX, and EXC 
(F1, 48=6.383, P=0.015). Moreover, between-group com-
parisons indicated that, in control rats, SPS exposure sig-
nificantly reduced BDNF levels compared to the NSPS-
SED group (P=0.0001). Exercise significantly increased 
BDNF levels in both the NSPS and SPS subgroups rela-
tive to their sedentary counterparts (P=0.0001). The exer-
cise-induced increase in BDNF was significantly greater 
in the NSPS group than in the SPS group (P=0.0001). 
In ovariectomized rats, OVX itself led to a significant 

 

Figure 2. Effect of FRW exercise on (anxiety-like behaviors) percentage of open arm entries in ovariectomized SPS rats
*Significant difference vs the CON/NSPS-SED group (P=0.0001), **Significant difference vs the CON/SPS-SED group 
(P=0.0001), ***Significant difference vs the CON/NSPS-EXC group (P=0.0001), &Significant difference vs the OVX/NSPS-SED 
group (P=0.0001), &&Significant difference vs the OVX/NSPS-EXC group (P=0.001).
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reduction in BDNF levels in the NSPS-SED group com-
pared to the corresponding control group (P=0.0001). 
SPS exposure further reduced BDNF levels compared 
to the NSPS-SED group (P=0.0001). In these groups, 
exercise significantly increased BDNF levels in both the 
NSPS (P=0.0001) and SPS (P=0.002) subgroups com-
pared to their non-exercising counterparts. The effect of 
exercise was significantly more pronounced in the NSPS 
group than in the SPS group (P=0.0001). Additionally, 
significant differences in hippocampal BDNF levels 
were observed between all control groups and their cor-
responding ovariectomized groups.

A three-way ANOVA on the BDNF levels in the PFC 
(Figure 4) demonstrated significant main effects of 
SPS (F1, 48=318.042, P=0.0001), OVX (F1, 48=96.501, 
P=0.0001), and EXC (F1, 48=117.094, P=0.0001), as well 
as a significant interaction between SPS, OVX, and EXC 
(F1, 48=6.319, P=0.015). Moreover, between-group com-
parisons indicated that, in control rats, SPS exposure led 
to a significant decrease in BDNF compared to the NSPS-
SED group (P=0.0001). Exercise significantly increased 
BDNF levels in both the NSPS and SPS subgroups rela-
tive to their sedentary counterparts (P=0.0001), with the 
effect of exercise being significantly greater in the NSPS 
group than in the SPS group (P=0.0001). In ovariecto-
mized rats, OVX itself caused a significant reduction in 
BDNF levels in the NSPS-SED group compared to the 
corresponding control group (P=0.0001). SPS exposure 
further decreased BDNF compared to the NSPS-SED 

group (P=0.0001). In these animals, exercise signifi-
cantly increased BDNF in both the NSPS (P=0.0001) 
and SPS (P=0.030) subgroups compared to their non-
exercising counterparts. The beneficial effect of exercise 
was significantly greater in the NSPS group than in the 
SPS group (P=0.0001). Additionally, significant differ-
ences in BDNF levels were observed between all control 
groups and their respective ovariectomized groups.

Effect of FRW on the level of IGF-1 in the hippo-
campus and PFC in healthy and OVX female rats 
with PTSD

A three-way ANOVA on hippocampal IGF-1 (Fig-
ure 5) demonstrated significant main effects of SPS 
(F1, 48=234.286, P=0.0001), OVX (F1, 48=241.006, 
P=0.0001), and EXC (F1, 48=196.831, P=0.0001), as well 
as significant interactions between SPS and OVX (F1, 

48=13.407, P=0.001) and between SPS, OVX, and EXC 
(F1, 48=7.705, P=0.008). Moreover, between-group com-
parisons indicated that, in the control group, SPS sig-
nificantly decreased IGF-1 compared to the NSPS-SED 
group (P=0.0001). In this group, exercise significantly 
increased IGF-1 in both the NSPS and SPS groups com-
pared to the non-exercise group (P=0.0001). The effect 
of exercise was significantly greater in the NSPS group 
than in the SPS group (P=0.0001). OVX significantly 
decreased IGF-1 in the NSPS-SED group compared to 
the control group (P=0.0001). In the ovariectomized 
group, SPS significantly decreased IGF-1 compared to 

 

Figure 3. Effect of FRW on hippocampal BDNF levels in ovariectomized control rats with PTSD
*Significant difference vs the CON/NSPS-SED group (P=0.0001), **Significant difference vs the CON/SPS-SED group 
(P=0.0001), ***Significant difference vs the CON/NSPS-EXC group (P=0.0001), &Significant difference vs the OVX/NSPS-SED 
group (P=0.0001), &&Significant difference vs the OVX/SPS-SED group (P=0.002), &&&Significant difference vs the OVX/NSPS-
EXC group (P=0.0001).
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the NSPS-SED group (P=0.0001). In this group, exer-
cise significantly increased IGF-1 in both the NSPS 
(P=0.0001) and SPS (P=0.040) groups compared to the 
non-exercise group. The effect of exercise in the NSPS 
group was significantly greater than in the SPS group 
(P=0/0001). Also, a significant difference in IGF-1 was 
observed between all control groups and similar ovariec-
tomized groups.

A three-way ANOVA on the level of IGF-1 in the 
PFC (Figure 6) demonstrated significant main effects 
of SPS (F1, 48=200.359, P=0.0001), OVX (F1, 48=29.745, 
P=0.0001), and EXC (F1, 48=119.225, P=0.0001), as well 
as a significant interaction between SPS and OVX (F1, 

48=7.978, P=0.007). Moreover, between-group com-
parisons indicated that, in control rats, SPS exposure 
resulted in a significant decrease in IGF-1 compared to 
the NSPS-SED group (P=0.0001). Exercise significant-
ly increased IGF-1 levels in both the NSPS (P=0.003) 
and SPS (P=0.0001) subgroups relative to their respec-
tive sedentary controls. Moreover, the effect of exercise 
was significantly greater in the NSPS group than in the 
SPS group (P=0.0001). In ovariectomized rats, OVX it-
self led to a significant decrease in IGF-1 levels in the 
NSPS-SED group compared to the corresponding con-
trol group (P=0.001). SPS exposure further reduced 
IGF-1 compared to the NSPS-SED group (P=0.0001). 
In these animals, exercise significantly increased IGF-1 

levels in both the NSPS and SPS subgroups compared 
to their sedentary counterparts (P=0.0001). As observed 
in the control groups, the effect of exercise was signifi-
cantly greater in the NSPS group than in the SPS group 
(P=0.0001). Additionally, significant differences in pre-
frontal IGF-1 levels were observed between all control 
groups and their respective ovariectomized groups.

Discussion

The present study demonstrated that the SPS model, as 
an established animal model of PTSD, significantly in-
duced anxiety-like behaviors, impaired cognitive mem-
ory, and reduced neurotrophic factors, including BDNF 
and IGF-1, in both the hippocampus and PFC of ovari-
ectomized and control rats. These findings are consistent 
with previous studies indicating the detrimental impact 
of SPS on behavioral and neurobiological markers asso-
ciated with PTSD, such as increased anxiety behaviors, 
memory deficits, and reduced neurotrophic factor levels 
[23, 27, 48].

Interestingly, our results indicated differential effects 
of FRW exercise on behavioral and molecular param-
eters depending on the hormonal status of the rats. In 
control animals, FRW exercise effectively ameliorated 
the behavioral deficits and significantly enhanced cog-
nitive memory, alongside increased levels of BDNF and 

 

Figure 4. Effect of forced running wheel exercise on prefrontal BDNF levels in ovariectomized SPS rats
*Significant difference vs the CON/NSPS-SED group (P=0.0001), **Significant difference vs the CON/SPS-SED group 
(P=0.0001), ***Significant difference vs the CON/NSPS-EXC group (P=0.0001), &Significant difference vs the OVX/NSPS-SED 
group (P=0.0001), &&Significant difference vs the OVX/SPS-SED group (P=0.030), &&&Significant difference vs the OVX/NSPS-
EXC group (P=0.0001).
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Figure 5. Effect of FRW exercise on hippocampal IGF-1 levels in ovariectomized SPS rats
*Significant difference vs the CON/NSPS-SED group (P=0.0001), **Significant difference vs the CON/SPS-SED group 
(P=0.0001), ***Significant difference vs the CON/NSPS-EXC group (P=0.0001), &Significant difference vs the OVX/NSPS-SED 
group (P=0.0001), &&Significant difference vs the OVX/SPS-SED group (P=0.040), &&&Significant difference vs the OVX/NSPS-
EXC group (P=0.0001).

 

Figure 6. Effect of FRW exercise on prefrontal IGF-1 levels in ovariectomized SPS rats
*Significant difference vs the CON/NSPS-SED group (P=0.003, P=0.0001, P=0.001), **Significant difference vs the CON/SPS-
SED group (P=0.0001), ***Significant difference vs the CON/NSPS-EXC group (P=0.0001), &Significant difference vs the OVX/
NSPS-SED group (P=0.0001), &&Significant difference vs the OVX/SPS-SED group (P=0.0001), &&&Significant difference vs the 
OVX/NSPS-EXC group (P=0.0001).
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IGF-1 in the hippocampus and PFC in both SPS and 
non-SPS groups. This aligns with previous research 
highlighting exercise-induced neurogenesis and syn-
aptic plasticity as underlying mechanisms of cognitive 
enhancement [49-52].

Our findings support and extend previous research in-
dicating that FRW, as used in this study, activates key 
neurotrophic signaling pathways underlying stress resil-
ience and cognitive improvement [53, 54]. FRW reliably 
elevates hippocampal and prefrontal BDNF and IGF-1 
levels, which in turn initiate downstream molecular cas-
cades critical for neuronal survival and synaptic plastic-
ity [55, 56]. Specifically, BDNF acts through its TrkB 
receptor to trigger PI3K/Akt and MAPK/ERK signaling, 
leading to phosphorylation of CREB and upregulation 
of genes associated with long-term potentiation and neu-
ronal health [57, 58]. Compared to voluntary running, 
forced exercise paradigms ensure consistent intensity 
and duration, which may account for more robust and re-
producible activation of these pathways [59, 60]. More-
over, IGF-1, upregulated both peripherally and centrally 
by forced exercise, synergizes with BDNF to further 
enhance PI3K/Akt signaling and promote neurogenesis 
and synaptic remodeling [61, 62].

Notably, prior studies in models of PTSD and estrogen 
deficiency have shown that FRW reverses stress-induced 
reductions in BDNF, restores downstream signaling ac-
tivity, and alleviates anxiety- and depression-like be-
haviors, underscoring the causal relevance of these mo-
lecular adaptations [62, 63]. By demonstrating that four 
weeks of FRW re-engages TrkB/PI3K/Akt and MAPK/
ERK pathways in OVX+SPS rats, our results provide a 
plausible mechanistic basis for the observed anxiolytic 
and cognitive benefits. Future research should directly 
assess the activation of these signaling pathways and fur-
ther clarify the differential effects of forced versus vol-
untary exercise on neuroplasticity and stress adaptation. 

However, in the ovariectomized groups, the beneficial 
effects of exercise on anxiety-like behaviors were pri-
marily observed in the non-SPS condition, with limited 
and non-significant improvements seen in the SPS-ex-
posed ovariectomized rats. This finding is supported by 
earlier studies suggesting that estrogen deficiency might 
exacerbate the neuropsychological impacts of PTSD, 
highlighting the importance of hormonal status in modu-
lating responses to stress and therapeutic interventions, 
such as exercise [17, 22, 64]. The observed limited ef-
fectiveness of exercise in the ovariectomized SPS group 
suggests that estrogenic mechanisms might be essential 
for the full therapeutic benefits of exercise interventions 

[36, 65], emphasizing the necessity for combined strat-
egies, possibly including hormonal supplementation, in 
managing PTSD symptoms in post-menopausal condi-
tions [37, 66]. 

Regarding cognitive performance, FRW exercise sig-
nificantly improved cognitive memory (DI) in control 
animals under both SPS and non-SPS conditions. In 
contrast, the cognitive enhancements in the ovariecto-
mized group were significant only in non-SPS condi-
tions, reflecting a complex interplay between stress ex-
posure, hormonal status, and cognitive outcomes. This 
observation highlights the significance of estrogen in 
memory formation and cognitive resilience under stress, 
with several studies confirming estrogen’s crucial role in 
hippocampal-dependent memory [15, 67].

Our biochemical analyses further reinforced these be-
havioral findings by showing that FRW exercise signifi-
cantly elevated hippocampal and prefrontal BDNF and 
IGF-1 levels across all exercised groups. These neuro-
trophic factors are known for their crucial roles in neuro-
nal survival, neurogenesis, synaptic plasticity, and cog-
nitive function [15, 68-70]. Exercise-induced increases 
in BDNF and IGF-1 levels have been repeatedly shown 
to facilitate neuronal resilience against stress-induced 
neurodegeneration, supporting cognitive functions im-
paired by stress-related disorders, such as PTSD [71-74].
Nonetheless, despite the marked biochemical changes, 
behavioral improvements in ovariectomized SPS rats re-
mained limited, suggesting that alterations at the molec-
ular level might precede or require prolonged interven-
tions to translate into observable behavioral outcomes.

The complex relationship between exercise intensity, 
duration, and outcomes in behavioral and neurochemical 
responses should also be considered. Moderate-intensity 
exercise, as utilized in this study, has been generally 
beneficial for cognitive and emotional functions [27].
Still, higher or lower intensities and prolonged durations 
might yield differing outcomes, [75] potentially address-
ing the non-significant findings observed in the ovariec-
tomized SPS condition.

Conclusion

FRW exercise mitigates PTSD-like behavioral and 
neurochemical deficits in hormonally intact rats, where-
as its efficacy is markedly blunted in ovariectomized 
animals exposed to SPS. Given this attenuated response, 
adjunct interventions that modulate estrogen signal-
ing—such as selective estrogen receptor modulators or 
tailored hormone replacement—should be investigated 
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to improve therapeutic outcomes in postmenopausal 
PTSD. Future research should further refine exercise 
parameters, explore optimal intensity and duration, de-
termine the long-term durability of the observed effects, 
and assess combination therapies to maximize benefits 
in hormone-deficient populations experiencing stress-
related disorders.

Limitations

This study has some limitations. The intervention last-
ed only four weeks, limiting insight into the long-term 
durability of exercise effects, as all outcomes were mea-
sured immediately post-intervention and no follow-up 
was conducted to assess whether the observed behavior-
al and neurotrophic improvements persist over time. The 
lack of a hormone replacement therapy group precludes 
the assessment of the interaction between estrogen status 
and exercise. Behavioral outcomes were based on single 
assays per domain, which may not fully capture the com-
plexity of PTSD-like symptoms. The relatively small 
sample size may also restrict statistical power. Future 
studies should address these limitations by employing 
longer interventions and follow-up assessments, incor-
porating additional experimental arms, expanding be-
havioral testing, and increasing cohort sizes to enhance 
the understanding of these findings.
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