

Impact of Physical Exercise on Behavioral Functions and Neurotrophic Factors on Ovariectomized Rats **Exposed to SPS**

Arvin Amiri¹ [0], Maryam Janbazi¹ [0], Seyedeh Rose Jamali² [0], Simin Ehsani Vostacolaee³ [0], Sakineh Shafia⁴ [0]

- 1. Department of Veterinary Medicine, Ba.C., Islamic Azad University, Babol, Iran.
- 2. Department of Biology, Ba.C., Islamic Azad University, Babol, Iran.
- 3. Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- 4. Department of Physiology, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.

Citation Amiri A, Janbazi M, Jamali SR, Ehsani Vostacolaee S, Shafia S. Impact of Physical Exercise on Behavioral Functions and Neurotrophic Factors on Ovariectomized Rats Exposed to SPS. Research in Molecular Medicine. 2024; 12(3):93-106. https://doi.org/10.32598/rmm.12.3.1389.1

Article Type: Research Paper

Article info: Received: 25 Mar 2024 Revised: 23 Apr 2024 Accepted: 26 Jul 2024

Keywords:

Brain-derived neurotrophic factor (BDNF), Cognition, Estrogen deficiency, Insulin-like growth factor I (IGF-1), Exercise, Ovariectomy (OVX), Stress disorders, Posttraumatic

ABSTRACT

Background: Post-traumatic stress disorder (PTSD) is a severe psychiatric condition associated with anxiety, cognitive deficits, and neurobiological changes. Estrogen deficiency occurs after ovariectomy (OVX) or menopause, exacerbating PTSD symptoms and limiting treatment options. Physical exercise has emerged as a non-pharmacological intervention with neuroprotective effects, but its efficacy under estrogen-deficient conditions remains unclear. This study aimed to evaluate the effects of moderate-intensity forced running wheel (FRW) exercise on PTSD-like behaviors, recognition memory, and neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) in the hippocampus and prefrontal cortex of ovariectomized rats exposed to single prolonged stress (SPS) as a model of PTSD.

Materials and Methods: Adult female Wistar rats (n=7 per group) were allocated to eight groups in a 2×2×2 factorial design based on ovarian status (sham vs OVX), stress exposure (no stress vs SPS), and physical activity (sedentary vs FRW). FRW was performed 30 min/day, 5 days/week for 4 weeks at 10 m/ min (~60% VO,max), indicating moderate intensity. Anxiety-like behaviours (% open arm time [OAT], % open arm entry [OAE]) and recognition memory (discrimination index (DI) were assessed using standard behavioural tests. ELISA was used to measure BDNF and IGF-1 levels in the hippocampus and prefrontal cortex (PFC). Data (Mean±SEM) were analyzed using a three-way ANOVA (OVX × SPS × Exercise) with the Tukey's post-hoc test; the assumptions of normality and homogeneity were verified. Partial η² and Cohen's d were reported for omnibus and key pairwise comparisons, respectively (α =0.05, two-tailed).

Results: SPS exposure significantly increased anxiety-like behaviors and impaired recognition memory in both control and ovariectomized rats. FRW exercise ameliorated anxiety and memory deficits and elevated BDNF and IGF-1 levels in control animals under both SPS and non-SPS conditions. However, in ovariectomized rats, the beneficial effects of exercise were confined mainly to non-SPS groups, with limited improvements observed in ovariectomized rats subjected to SPS. Estrogen deficiency diminished the neuroprotective and behavioral benefits of exercise under stress.

Conclusion: Moderate-intensity FRW exercise effectively mitigates PTSD-related behavioral and neurochemical deficits in rats with normal ovarian hormone levels. Still, its efficacy is substantially reduced under estrogen-deficient conditions. These findings highlight the importance of hormonal status in determining the therapeutic potential of exercise for PTSD. Although the SPS model provides valuable insights into PTSD-like symptoms, it does not fully replicate the complexity of human PTSD; therefore, extrapolation to clinical settings should be approached with caution. Combined interventions, including hormonal support, may be more effective for post-menopausal populations.

* Corresponding Author:

Sakineh Shafia, Associate Professor.

Address: Department of Physiology, Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.

Phone: +98 (911) 3554759 E-mail: srshafia@yahoo.com

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-By-NC: https://creativecommons.org/licenses/by-nc/4.0/legalcode.en), which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes

Introduction

ost-traumatic stress disorder (PTSD) is a debilitating psychiatric condition that develops following exposure to traumatic events [1, 2]. It is characterized by persistent anxiety, impaired cognitive functions, dysregulation of HPA-axis function, and neuroinflammation [3, 4]. This disorder affects multiple brain regions, notably the hippocampus and prefrontal cortex (PFC), areas critically involved in regulating anxiety, memory processing, and stress response mechanisms [5, 6].

Animal models, such as single prolonged stress (SPS), have been widely utilized to mimic PTSD in laboratory settings [7]. The SPS model effectively reproduces behavioral symptoms such as anxiety, impaired cognition, neurochemical changes, and reduced levels of neurotrophic factors seen in PTSD patients [8-10]. Specifically, reduced levels of brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) in the hippocampus and PFC have been consistently reported following SPS exposure, suggesting their crucial roles in the neurobiological underpinnings of PTSD [8, 11-14].

Estrogen and other ovarian hormones have a significant influence on cognitive functions, emotional responses, and neuronal plasticity [15-17]. Estrogen deprivation, as occurs naturally during menopause or artificially via ovariectomy (OVX), exacerbates anxiety-like behaviors and cognitive deficits [15, 16, 18]. Studies suggest that reduced estrogen levels might potentiate the severity of PTSD symptoms [19, 20], complicating its clinical management, particularly in postmenopausal women or ovariectomized animal models [17, 21, 22].

Physical exercise is a non-pharmacological, safe, and cost-effective intervention extensively studied for its neuroprotective effects against stress-induced psychiatric disorders, including PTSD [1, 23, 24]. Exercise promotes neurogenesis, synaptic plasticity, and cognitive resilience, partly mediated by increasing neurotrophic factors, such as BDNF and IGF-1, in brain regions associated with stress and memory [25-27]. Among various exercise paradigms, forced running wheel (FRW) exercise has emerged as an effective method for mitigating anxiety-like behaviors and cognitive impairment in rodents [8, 28-30]. While multiple studies have confirmed the neuroprotective effects of exercise in intact rodents, including improved cognition and elevated levels of BDNF and IGF-1, findings in ovariectomized models have been inconsistent [31-33]. Some studies have reported blunted or absent responses to exercise in OVX animals, especially under stress conditions [11, 34-36].

However, evidence regarding the effectiveness of FRW, specifically in ovariectomized animals under PTSD-like conditions, remains limited. These conflicting reports indicate that estrogen status may play a crucial role in determining the effectiveness of exercise interventions [8, 17]. Still, few studies have directly explored this interaction in PTSD models, leaving a significant gap in understanding how estrogen deficiency and traumatic stress together influence exercise responsiveness [3, 23].

Therefore, this study aimed to investigate the effects of moderate-intensity FRW exercise on anxiety-like behaviors, cognitive memory performance, and neurotrophic factor levels (BDNF and IGF-1) in the hippocampus and PFC of ovariectomized rats exposed to SPS-induced PTSD. Given the modulatory role of estrogen on neurotrophic signaling and emotional regulation, postmenopausal women may require tailored interventions that combine physical exercise with hormonal or pharmacological support to manage PTSD symptoms effectively [21, 37]. We hypothesized that moderateintensity FRW exercise would attenuate behavioral impairments and enhance neurotrophic factor expression, potentially moderated by estrogen status, thus providing insights into tailored therapeutic strategies for PTSD in post-menopausal conditions.

Materials and Methods

Experimental animals

A total of 56 female Wistar rats from the animal house of Mazandaran University of Medical Science, Sari, Iran, initially weighing 200-250 g, were used in this study. Throughout the study, all rats, except for the control group rats whose ovaries were not removed, were housed individually in separate polycarbonate cages. In contrast, the control group rats, whose ovaries were not removed, were housed collectively, with eight rats per cage, in a large Plexiglas enclosure. All animals were kept in a temperature-controlled animal facility (24±1 °C) under a standard 12-hour light/dark cycle with free access to water and food. The rats were randomly allocated to one of the eight experimental groups (n=7 per group):

- 1. Control + None-SPS + Sedentary (CON/NSPS-SED)
- 2. Control + None-SPS + Exercise (CON/NSPS-EXC)

- 3. Control + SPS + Sedentary (CON/SPS-SED)
- 4. Control + SPS + Exercise (CON/SPS-EXC)
- 5. Ovariectomized + None-SPS + Sedentary (OVX/NSPS-SED)
- 6. Ovariectomized + None-SPS + Exercise (OVX/NSPS-EXC)
- 7. Ovariectomized + SPS + Sedentary (OVX/SPS-SED)
- 8. Ovariectomized + SPS + Exercise (OVX/SPS-EXC)

The experimental timeline involved OVX (for OVX groups) followed by a 20-day recovery period. Subsequently, SPS or sham procedures were administered. After 7 days post-SPS, the exercise or sedentary conditions commenced and lasted for 4 weeks. Behavioral tests were conducted after the intervention period, followed by euthanasia and tissue collection.

OVX procedure

After administering deep anesthesia with an intraperitoneal injection of ketamine (100 mg/kg) and xylazine (2.5 mg/kg) and disinfecting the site, a small incision was made in the lateral abdominal wall on both sides to remove the ovaries. The skin and muscle layers were then sutured. In the sham group, after making the incision and observing the ovaries, the skin and muscle layers were sutured without damaging the ovaries. Twenty days were allocated for surgical recovery and the clearance of endogenous ovarian hormones [11]. The sham groups underwent placebo surgery without OVX, and the OVX groups underwent OVX surgery [11].

SPS protocol

sPS, as a model of PTSD, was conducted in three stages: Restraining for two hours, forced swimming for 20 min, and anesthetizing by ether. The size of the restrainer should be appropriate for the animal that is restrained. After being restrained, animals were kept individually in Plexiglas cages. Then, the rats were forced to swim for 20 minutes in a cylindrical container (240 mm in diameter, 500 mm in height) filled to two-thirds of its height with water maintained at 23±1 °C. After a 15-minute recovery period, the animals were briefly exposed to diethyl ether for anesthesia, following the laboratory's approved protocol [38, 39]. Thereafter, the rats were maintained in their cages for 14 days [40]. Although diethyl ether is less commonly used in modern settings, it was applied

here under controlled conditions to ensure rapid sedation. All procedures were approved by the institutional ethics committee and conducted under national guidelines to minimize animal suffering [41].

FRW exercise

Fourteen days after SPS, rats were habituated to the FRW apparatus in order to decrease stress. For habituation to the FRW, rats walked on the FRW at the lowest speed (3 m/min) for 15 min for 3 days. After habituation, moderate exercise was initiated for the exercise groups. The animals ran in aFRW at a speed of 10 m/min for 30 minutes, five days per week, for four weeks [29, 42]. Rats that refused to walk in the FRW were excluded and replaced with new animals. Rats in sedentary groups were placed in the switched-off FRW for 5 min once a day [30, 43].

Based on previous studies, a running speed of 10 m/min has been classified as moderate-intensity exercise in female Wistar rats, as it approximately corresponds to 60% of their maximal oxygen uptake (VO₂max) or maximal lactate steady state (MLSS) [29, 30].

Elevated plus maze (EPM) test

The EPM test was used to assess anxiety-like behavior in the rodent model one day after completing the treatment phase. The EPM consists of a plus-shaped apparatus elevated 46 cm above the floor with four arms (51×10×40 cm each) and a central platform (10×10 cm). Each rat was individually placed in the central zone facing an open arm and allowed to explore for 5 minutes. The rats' behavior in the EPM was recorded using a video camera (Borj Sanat Azma Co., Tehran, Iran) positioned 181 cm above the apparatus. Reduced time spent and entries into the open arms, along with increased time spent and entries into the closed arms, were analyzed as indicators of anxiety-related behaviors [1, 44].

Object recognition memory test (ORMT)

Cognitive function, specifically recognition memory, was evaluated using the ORMT. The test was conducted in an open-field arena (e.g. 50×50×40 cm). The procedure consisted of three phases: habituation, familiarization, and test.

First, in the habituation phase, each rat was allowed to explore the empty arena freely for 10 minutes. Then, during the familiarization phase, the animal was exposed to two identical objects. After a defined delay,

one of the familiar objects is replaced with a novel one during the test phase. The animal's tendency to explore the novel object is interpreted as a measure of recognition memory. An increased exploration time for the novel object indicates the animal's ability to retain and recall previous information.

Due to its simplicity and high sensitivity, this test is widely used in neuroscience research to evaluate the effects of drugs, stress, or behavioral interventions on memory function [1, 45, 46].

Measurement of BDNF and IGF-1 levels in the hippocampus and PFC

After behavioral tests, animals were deeply anesthetized with ketamine and xylazine and humanely sacrificed. The brains were immediately removed, and the hippocampus and PFC were rapidly dissected on ice. Tissue samples were snap-frozen in liquid nitrogen and stored at $-80\,^{\circ}\mathrm{C}$ until analysis.

For protein extraction, the frozen tissues were homogenized in ice-cold lysis buffer (prepared according to the kit instructions) using a tissue homogenizer at temperatures below 4 °C. The homogenates were centrifuged at 2,000 rpm for 20 minutes at 4 °C, and the resulting supernatants were collected for the quantification of BDNF and IGF-1.

The concentrations of BDNF and IGF-1 in the hippocampal and PFC supernatants were determined using commercially available ELISA kits (ZellBio GmbH, Germany), following the manufacturer's protocol. Absorbance was measured at the appropriate wavelength using a microplate reader, and concentrations were expressed as ng/mg protein according to the kit's instructions. To normalize the results, the total protein content in the supernatants was determined using the Bradford assay [47].

Statistical analysis

After assessing the normality of data using the Kolmogorov-Smirnov test, descriptive data are presented as Mean±SEM. The three-way ANOVA (SPS × OVX × EXC) followed by Tukey's post-hoc test was used to determine significant differences between groups. SPSS software, version 26 was used for data analysis, and a P<0.05 was considered the significance level.

Result

Time spent in the open arm

Data on anxiety-like behaviors in the EPM are illustrated in Figures 1A and 1B.

A three-way ANOVA on the percentage of time spent in the open arm (Figure 1A) demonstrated significant main effects of SPS ($F_{1, 48}$ =128.759, P=0.0001), OVX ($F_{1, 48}$ =129.443, P=0.0001), and EXC ($F_{1, 48}$ =78.345, P=0.0001).

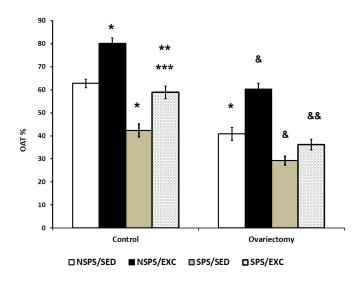
Moreover, between-group comparisons indicated that, in control rats, exposure to SPS significantly reduced the percent of open arm time (%OAT) compared to the NSPS-SED group (P=0.0001). In this group, exercise significantly increased %OAT in both the NSPS (P=0.0001) and SPS (P=0.0001) subgroups compared to their respective sedentary controls. Notably, the effect of exercise was significantly greater in the NSPS group than in the SPS group (P=0.0001).

In the ovariectomized groups, a significant reduction in %OAT was observed following SPS exposure compared to the NSPS-SED group (P=0.028). Exercise significantly increased %OAT only in the NSPS subgroup (P=0.0001), and the impact of exercise was more pronounced in the NSPS group compared to the SPS group (P=0.0001). Furthermore, significant differences in %OAT were observed between all control groups and their corresponding ovariectomized groups.

Percentage of entries into the open arm

A three-way ANOVA on the percentage of open arm entries (Figure 1B) demonstrated significant main effects of SPS ($F_{1,48}$ =282.735, P=0.0001), OVX ($F_{1,48}$ =140.425, P=0.0001), and EXC ($F_{1,48}$ =107.268, P=0.0001).

Moreover, between-group comparisons indicated that, in control rats, SPS exposure significantly reduced the percent of open arm entry (%OAE) compared to the NSPS-SED group (P=0.0001). In these groups, exercise significantly increased %OAE in both NSPS and SPS subgroups compared to their respective sedentary controls (P=0.0001). Moreover, the effect of exercise was significantly greater in the NSPS group than in the SPS group (P=0.0001). In ovariectomized rats, OVX itself caused a significant reduction in %OAE in the NSPS-SED group compared to the control group (P=0.0001). SPS exposure further decreased %OAE compared to the NSPS-SED group (P=0.0001). In these animals, exercise



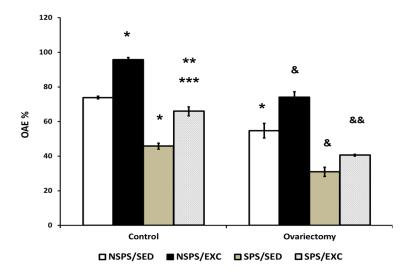


Figure 1. Effect of FRW exercise on (anxiety-like behaviors) ovariectomized SPS rats

A) Effect of FRW exercise on (anxiety-like behaviors) percentage of time spent in the open arm ovariectomized SPS rats

"Significant difference vs the CON/NSPS-SED group (P=0.0001), "Significant difference vs the CON/SPS-SED group (P=0.0001), "Significant difference vs the CON/NSPS-EXC group (P=0.0001), and Significant difference vs the OVX/NSPS-EXC group (P=0.0001), "Significant difference vs the OVX/NSPS-

SED group (P=0.0001, and P=0.028), && Significant difference vs the OVX/NSPS-EXC group (P=0.0001).

ENTITY

B) Effect of FRW exercise on (anxiety-like behaviors) percentage of open arm entries in ovariectomized SPS rats 'Significant difference vs the CON/NSPS-SED group (P=0.0001), "Significant difference vs the CON/NSPS-EXC group (P=0.0001), Significant difference vs the OVX/NSPS-EXC group (P=0.0001), Significant difference vs the OVX/NSPS-EXC group (P=0.0001).

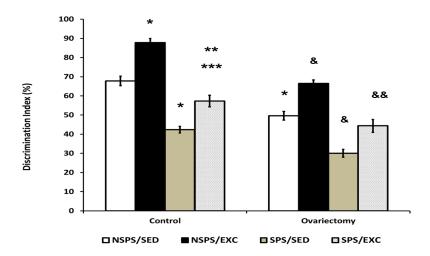


Figure 2. Effect of FRW exercise on (anxiety-like behaviors) percentage of open arm entries in ovariectomized SPS rats 'Significant difference vs the CON/NSPS-SED group (P=0.0001), "Significant difference vs the CON/NSPS-EXC group (P=0.0001), Significant difference vs the OVX/NSPS-EXC group (P=0.0001), Given Group (P=0.0001), Given Group (P=0.0001).

significantly increased the %OAE only in the SPS subgroup (P=0.0001). The beneficial effect of exercise was again more pronounced in the NSPS group than in the SPS group (P=0.001). Additionally, significant differences in %OAE were found between all control groups and their corresponding ovariectomized groups.

Effect of FRW on cognitive memory in healthy and ovariectomized rats with PTSD

A three-way ANOVA on cognitive memory (Figure 2) demonstrated significant main effects of SPS ($F_{1,48}$ =203.474, P=0.0001), OVX ($F_{1,48}$ =89.093, P=0.0001), and EXC ($F_{1,48}$ =93.433, P=0.0001), as well as a significant interaction between SPS and OVX ($F_{1,48}$ =4.244, P=0.045).

Moreover, between-group comparisons indicated that, in control rats, SPS exposure significantly reduced DI compared to the NSPS-SED group (P=0.0001). Exercise significantly increased DI in both the NSPS (P=0.0001) and SPS (P=0.002) subgroups relative to their respective sedentary controls. Notably, the effect of exercise was significantly greater in the NSPS group than in the SPS group (P=0.0001).

In ovariectomized rats, OVX itself significantly reduced DI in the NSPS-SED group compared to the control group (P=0.0001). SPS exposure further decreased

DI compared to the NSPS-SED group (P=0.0001). Exercise significantly increased DI in both the NSPS (P=0.0001) and SPS (P=0.003) subgroups compared to their sedentary counterparts. The positive impact of exercise was significantly more pronounced in the NSPS group than in the SPS group (P=0.0001). Additionally, significant differences in DI were observed between all control groups and their corresponding ovariectomized groups.

Effect of FRW on BDNF levels in the hippocampus and PFC regions in healthy and ovariectomized female rats with PTSD

A three-way ANOVA on hippocampal BDNF (Figure 3) demonstrated significant main effects of SPS ($F_{1,48}$ =666.881, P=0.0001), OVX ($F_{1,48}$ =186.507, P=0.0001), and EXC ($F_{1,48}$ =154.170, P=0.0001), as well as significant interactions between SPS and OVX ($F_{1,48}$ =64.030, P=0.0001) and between SPS, OVX, and EXC ($F_{1,48}$ =6.383, P=0.015). Moreover, between-group comparisons indicated that, in control rats, SPS exposure significantly reduced BDNF levels compared to the NSPS-SED group (P=0.0001). Exercise significantly increased BDNF levels in both the NSPS and SPS subgroups relative to their sedentary counterparts (P=0.0001). The exercise-induced increase in BDNF was significantly greater in the NSPS group than in the SPS group (P=0.0001). In ovariectomized rats, OVX itself led to a significant

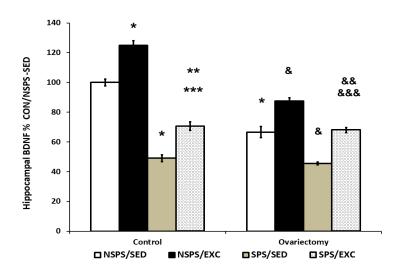


Figure 3. Effect of FRW on hippocampal BDNF levels in ovariectomized control rats with PTSD
*Significant difference vs the CON/NSPS-SED group (P=0.0001), *Significant difference vs the CON/SPS-SED group (P=0.0001), *Significant difference vs the CON/NSPS-EXC group (P=0.0001), *Significant difference vs the OVX/NSPS-SED group (P=0.0001), *Significant difference vs the OVX/NSPS-SED group (P=0.0001), *Significant difference vs the OVX/NSPS-SED group (P=0.0001).

reduction in BDNF levels in the NSPS-SED group compared to the corresponding control group (P=0.0001). SPS exposure further reduced BDNF levels compared to the NSPS-SED group (P=0.0001). In these groups, exercise significantly increased BDNF levels in both the NSPS (P=0.0001) and SPS (P=0.002) subgroups compared to their non-exercising counterparts. The effect of exercise was significantly more pronounced in the NSPS group than in the SPS group (P=0.0001). Additionally, significant differences in hippocampal BDNF levels were observed between all control groups and their corresponding ovariectomized groups.

A three-way ANOVA on the BDNF levels in the PFC (Figure 4) demonstrated significant main effects of SPS $(F_{1.48}=318.042, P=0.0001), OVX (F_{1.48}=96.501,$ P=0.0001), and EXC ($F_{1.48}=117.094$, P=0.0001), as well as a significant interaction between SPS, OVX, and EXC $(F_{1.48} = 6.319, P = 0.015)$. Moreover, between-group comparisons indicated that, in control rats, SPS exposure led to a significant decrease in BDNF compared to the NSPS-SED group (P=0.0001). Exercise significantly increased BDNF levels in both the NSPS and SPS subgroups relative to their sedentary counterparts (P=0.0001), with the effect of exercise being significantly greater in the NSPS group than in the SPS group (P=0.0001). In ovariectomized rats, OVX itself caused a significant reduction in BDNF levels in the NSPS-SED group compared to the corresponding control group (P=0.0001). SPS exposure further decreased BDNF compared to the NSPS-SED

group (P=0.0001). In these animals, exercise significantly increased BDNF in both the NSPS (P=0.0001) and SPS (P=0.030) subgroups compared to their non-exercising counterparts. The beneficial effect of exercise was significantly greater in the NSPS group than in the SPS group (P=0.0001). Additionally, significant differences in BDNF levels were observed between all control groups and their respective ovariectomized groups.

Effect of FRW on the level of IGF-1 in the hippocampus and PFC in healthy and OVX female rats with PTSD

A three-way ANOVA on hippocampal IGF-1 (Figure 5) demonstrated significant main effects of SPS $(F_{1} = 234.286, P=0.0001), OVX (F_{1} = 48 = 241.006,$ P=0.0001), and EXC ($F_{1.48}=196.831$, P=0.0001), as well as significant interactions between SPS and OVX (F, ₄₈=13.407, P=0.001) and between SPS, OVX, and EXC $(F_{1.48}=7.705, P=0.008)$. Moreover, between-group comparisons indicated that, in the control group, SPS significantly decreased IGF-1 compared to the NSPS-SED group (P=0.0001). In this group, exercise significantly increased IGF-1 in both the NSPS and SPS groups compared to the non-exercise group (P=0.0001). The effect of exercise was significantly greater in the NSPS group than in the SPS group (P=0.0001). OVX significantly decreased IGF-1 in the NSPS-SED group compared to the control group (P=0.0001). In the ovariectomized group, SPS significantly decreased IGF-1 compared to

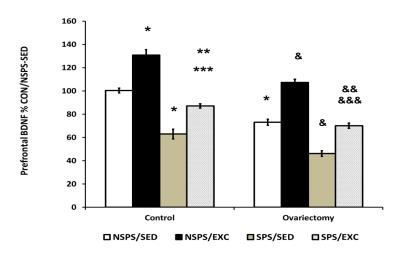


Figure 4. Effect of forced running wheel exercise on prefrontal BDNF levels in ovariectomized SPS rats 'Significant difference vs the CON/NSPS-SED group (P=0.0001), "Significant difference vs the CON/NSPS-SED group (P=0.0001), "Significant difference vs the OVX/NSPS-SED group (P=0.0001), Significant difference vs the OVX/NSPS-SED group (P=0.0001), Significant difference vs the OVX/NSPS-SED group (P=0.0001), Significant difference vs the OVX/NSPS-SED group (P=0.0001).

the NSPS-SED group (P=0.0001). In this group, exercise significantly increased IGF-1 in both the NSPS (P=0.0001) and SPS (P=0.040) groups compared to the non-exercise group. The effect of exercise in the NSPS group was significantly greater than in the SPS group (P=0/0001). Also, a significant difference in IGF-1 was observed between all control groups and similar ovariectomized groups.

A three-way ANOVA on the level of IGF-1 in the PFC (Figure 6) demonstrated significant main effects of SPS (F_{1.48}=200.359, P=0.0001), OVX (F_{1.48}=29.745, P=0.0001), and EXC (F_{1.48}=119.225, P=0.0001), as well as a significant interaction between SPS and OVX (F, $_{48}$ =7.978, P=0.007). Moreover, between-group comparisons indicated that, in control rats, SPS exposure resulted in a significant decrease in IGF-1 compared to the NSPS-SED group (P=0.0001). Exercise significantly increased IGF-1 levels in both the NSPS (P=0.003) and SPS (P=0.0001) subgroups relative to their respective sedentary controls. Moreover, the effect of exercise was significantly greater in the NSPS group than in the SPS group (P=0.0001). In ovariectomized rats, OVX itself led to a significant decrease in IGF-1 levels in the NSPS-SED group compared to the corresponding control group (P=0.001). SPS exposure further reduced IGF-1 compared to the NSPS-SED group (P=0.0001). In these animals, exercise significantly increased IGF-1

levels in both the NSPS and SPS subgroups compared to their sedentary counterparts (P=0.0001). As observed in the control groups, the effect of exercise was significantly greater in the NSPS group than in the SPS group (P=0.0001). Additionally, significant differences in prefrontal IGF-1 levels were observed between all control groups and their respective ovariectomized groups.

Discussion

The present study demonstrated that the SPS model, as an established animal model of PTSD, significantly induced anxiety-like behaviors, impaired cognitive memory, and reduced neurotrophic factors, including BDNF and IGF-1, in both the hippocampus and PFC of ovariectomized and control rats. These findings are consistent with previous studies indicating the detrimental impact of SPS on behavioral and neurobiological markers associated with PTSD, such as increased anxiety behaviors, memory deficits, and reduced neurotrophic factor levels [23, 27, 48].

Interestingly, our results indicated differential effects of FRW exercise on behavioral and molecular parameters depending on the hormonal status of the rats. In control animals, FRW exercise effectively ameliorated the behavioral deficits and significantly enhanced cognitive memory, alongside increased levels of BDNF and



Figure 5. Effect of FRW exercise on hippocampal IGF-1 levels in ovariectomized SPS rats

'Significant difference vs the CON/NSPS-SED group (P=0.0001), "Significant difference vs the CON/SPS-SED group (P=0.0001), "Significant difference vs the CON/NSPS-EXC group (P=0.0001), Significant difference vs the OVX/NSPS-SED group (P=0.0001), Significant difference vs the OVX/NSPS-SED group (P=0.0001), Significant difference vs the OVX/NSPS-SED group (P=0.0001).

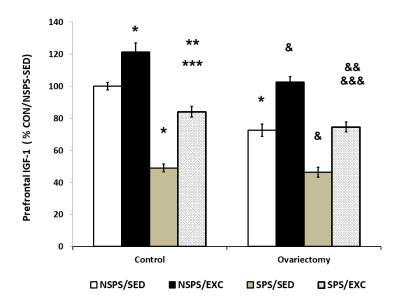


Figure 6. Effect of FRW exercise on prefrontal IGF-1 levels in ovariectomized SPS rats

'Significant difference vs the CON/NSPS-SED group (P=0.003, P=0.0001, P=0.0001), "Significant difference vs the CON/SPS-SED group (P=0.0001), Significant difference vs the CON/NSPS-EXC group (P=0.0001), Significant difference vs the OVX/NSPS-SED group (P=0.0001), Significant difference vs the OVX/NSPS-SED group (P=0.0001), Significant difference vs the OVX/NSPS-EXC group (P=0.0001).

IGF-1 in the hippocampus and PFC in both SPS and non-SPS groups. This aligns with previous research highlighting exercise-induced neurogenesis and synaptic plasticity as underlying mechanisms of cognitive enhancement [49-52].

Our findings support and extend previous research indicating that FRW, as used in this study, activates key neurotrophic signaling pathways underlying stress resilience and cognitive improvement [53, 54]. FRW reliably elevates hippocampal and prefrontal BDNF and IGF-1 levels, which in turn initiate downstream molecular cascades critical for neuronal survival and synaptic plasticity [55, 56]. Specifically, BDNF acts through its TrkB receptor to trigger PI3K/Akt and MAPK/ERK signaling, leading to phosphorylation of CREB and upregulation of genes associated with long-term potentiation and neuronal health [57, 58]. Compared to voluntary running, forced exercise paradigms ensure consistent intensity and duration, which may account for more robust and reproducible activation of these pathways [59, 60]. Moreover, IGF-1, upregulated both peripherally and centrally by forced exercise, synergizes with BDNF to further enhance PI3K/Akt signaling and promote neurogenesis and synaptic remodeling [61, 62].

Notably, prior studies in models of PTSD and estrogen deficiency have shown that FRW reverses stress-induced reductions in BDNF, restores downstream signaling activity, and alleviates anxiety- and depression-like behaviors, underscoring the causal relevance of these molecular adaptations [62, 63]. By demonstrating that four weeks of FRW re-engages TrkB/PI3K/Akt and MAPK/ERK pathways in OVX+SPS rats, our results provide a plausible mechanistic basis for the observed anxiolytic and cognitive benefits. Future research should directly assess the activation of these signaling pathways and further clarify the differential effects of forced versus voluntary exercise on neuroplasticity and stress adaptation.

However, in the ovariectomized groups, the beneficial effects of exercise on anxiety-like behaviors were primarily observed in the non-SPS condition, with limited and non-significant improvements seen in the SPS-exposed ovariectomized rats. This finding is supported by earlier studies suggesting that estrogen deficiency might exacerbate the neuropsychological impacts of PTSD, highlighting the importance of hormonal status in modulating responses to stress and therapeutic interventions, such as exercise [17, 22, 64]. The observed limited effectiveness of exercise in the ovariectomized SPS group suggests that estrogenic mechanisms might be essential for the full therapeutic benefits of exercise interventions

[36, 65], emphasizing the necessity for combined strategies, possibly including hormonal supplementation, in managing PTSD symptoms in post-menopausal conditions [37, 66].

Regarding cognitive performance, FRW exercise significantly improved cognitive memory (DI) in control animals under both SPS and non-SPS conditions. In contrast, the cognitive enhancements in the ovariectomized group were significant only in non-SPS conditions, reflecting a complex interplay between stress exposure, hormonal status, and cognitive outcomes. This observation highlights the significance of estrogen in memory formation and cognitive resilience under stress, with several studies confirming estrogen's crucial role in hippocampal-dependent memory [15, 67].

Our biochemical analyses further reinforced these behavioral findings by showing that FRW exercise significantly elevated hippocampal and prefrontal BDNF and IGF-1 levels across all exercised groups. These neurotrophic factors are known for their crucial roles in neuronal survival, neurogenesis, synaptic plasticity, and cognitive function [15, 68-70]. Exercise-induced increases in BDNF and IGF-1 levels have been repeatedly shown to facilitate neuronal resilience against stress-induced neurodegeneration, supporting cognitive functions impaired by stress-related disorders, such as PTSD [71-74]. Nonetheless, despite the marked biochemical changes, behavioral improvements in ovariectomized SPS rats remained limited, suggesting that alterations at the molecular level might precede or require prolonged interventions to translate into observable behavioral outcomes.

The complex relationship between exercise intensity, duration, and outcomes in behavioral and neurochemical responses should also be considered. Moderate-intensity exercise, as utilized in this study, has been generally beneficial for cognitive and emotional functions [27]. Still, higher or lower intensities and prolonged durations might yield differing outcomes, [75] potentially addressing the non-significant findings observed in the ovariectomized SPS condition.

Conclusion

FRW exercise mitigates PTSD-like behavioral and neurochemical deficits in hormonally intact rats, whereas its efficacy is markedly blunted in ovariectomized animals exposed to SPS. Given this attenuated response, adjunct interventions that modulate estrogen signaling—such as selective estrogen receptor modulators or tailored hormone replacement—should be investigated

to improve therapeutic outcomes in postmenopausal PTSD. Future research should further refine exercise parameters, explore optimal intensity and duration, determine the long-term durability of the observed effects, and assess combination therapies to maximize benefits in hormone-deficient populations experiencing stress-related disorders.

Limitations

This study has some limitations. The intervention lasted only four weeks, limiting insight into the long-term durability of exercise effects, as all outcomes were measured immediately post-intervention and no follow-up was conducted to assess whether the observed behavioral and neurotrophic improvements persist over time. The lack of a hormone replacement therapy group precludes the assessment of the interaction between estrogen status and exercise. Behavioral outcomes were based on single assays per domain, which may not fully capture the complexity of PTSD-like symptoms. The relatively small sample size may also restrict statistical power. Future studies should address these limitations by employing longer interventions and follow-up assessments, incorporating additional experimental arms, expanding behavioral testing, and increasing cohort sizes to enhance the understanding of these findings.

Ethical Considerations

Compliance with ethical guidelines

The study was approved by the Research Ethics Committee of Mazandaran University of Medical Sciences, Sari, Iran (Code: IR.MAZUMS.AEC.1402.053). All experimental trials were conducted by the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Funding

This study was supported by a grant from Mazandaran University of Medical Sciences, Sari, Iran.

Authors contribution's

Study design and supervision: Sakineh Shafia; Laboratory experiments and data collection: Arvin Amiri, Maryam Janbazi; Investigation: Seyede Rose Jamali and Simin Ehsani Vostacolaee; Formal analysis: Sakineh Shafia; Writing: Arvin Amiri; Review and editing: Sakineh Shafia; Final approval: All authors.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgements

The authors thank Mazandaran University of Medical Sciences, Sari, Iran, for providing facilities for this work.

References

- [1] Amiri A, Khanjani M, Shoshtari A, Seyedpour SP, Akhoundzadeh K, Shafia S. A comparison of the effects of voluntary and involuntary exercise on behavioral responses and serum levels of IGF-1 and corticosterone in ovariectomized rats with PTSD (Persian)]. J Mazandaran Univ Med Sci. 2025; 34(242):1-15. [Link]
- [2] Wellington NJ, Boucas AP, Lagopoulos J, Quigley BL, Kuballa AV. Molecular pathways of ketamine: A systematic review of immediate and sustained effects on PTSD. Psychopharmacology (Berl). 2025; 242(6):1197-243. [DOI:10.1007/s00213-025-06756-4] [PMID]
- [3] Raise-Abdullahi P, Meamar M, Vafaei AA, Alizadeh M, Dadkhah M, Shafia S, et al. Hypothalamus and post-traumatic stress disorder: A review. Brain Sci. 2023; 13(7):1010. [DOI:10.3390/brainsci13071010] [PMID]
- [4] Wei L, Wu Z, Xia Q, Baeken C, Wu GR. Prefrontal-hippocampal pathways underlying adolescent resilience. Eur Child Adolesc Psychiatry. 2025; 34(9):2815-23. [DOI:10.1007/ s00787-025-02704-x] [PMID]
- [5] Lisieski MJ, Eagle AL, Conti AC, Liberzon I, Perrine SA. Single-prolonged stress: A review of two decades of progress in a rodent model of post-traumatic stress disorder. Front Psychiatry. 2018; 9:196. [DOI:10.3389/fpsyt.2018.00196] [PMID]
- [6] Mojtahedi S, Shabkhiz F, Ravasi AA, Rosenkranz S, Soori R, Soleimani M, et al. Voluntary wheel running promotes improvements in biomarkers associated with neurogenic activity in adult male rats. Biochem Biophys Res Commun. 2020; 533(4):1505-11. [DOI:10.1016/j.bbrc.2020.09.110] [PMID]
- [7] Ferland-Beckham C, Chaby LE, Daskalakis NP, Knox D, Liberzon I, Lim MM, et al. Systematic review and methodological considerations for the use of single prolonged stress and fear extinction retention in rodents. Front Behav Neurosci. 2021; 15:652636. [DOI:10.3389/fnbeh.2021.652636] [PMID]
- [8] Shafia S, Vafaei AA, Samaei SA, Bandegi AR, Rafiei A, Valadan R, et al. Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alternations in hippocampal BDNF and mRNA expression of apoptosis related proteins in a rat model of post-traumatic stress disorder. Neurobiol Learn Mem. 2017; 139:165-78. [DOI:10.1016/j.nlm.2017.01.009] [PMID]

- [9] Wang HN, Bai YH, Chen YC, Zhang RG, Wang HH, Zhang YH, et al. Repetitive transcranial magnetic stimulation ameliorates anxiety-like behavior and impaired sensorimotor gating in a rat model of post-traumatic stress disorder. Plos One. 2015; 10(2):e0117189. [DOI:10.1371/journal. pone.0117189] [PMID]
- [10] Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci. 2023; 17:1281401. [DOI:10.3389/fnins.2023.1281401] [PMID]
- [11] Yakhkeshi R, Roshani F, Akhoundzadeh K, Shafia S. Effect of treadmill exercise on serum corticosterone, serum and hippocampal BDNF, hippocampal apoptosis and anxiety behavior in an ovariectomized rat model of post-traumatic stress disorder (PTSD). Physiol Behav. 2022; 243:113629. [DOI:10.1016/j.physbeh.2021.113629] [PMID]
- [12] Nursey J, Phelps AJ. Chapter 20 Stress, Trauma, and Memory in PTSD. In: Fink G, editor. Stress: Concepts, cognition, emotion, and behavior. San Diego: Academic Press; 2016. [DOI:10.1016/B978-0-12-800951-2.00020-0]
- [13] Soto M, Cai W, Konishi M, Kahn CR. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc Natl Acad Sci U S A. 2019; 116(13):6379-84. [DOI:10.1073/pnas.1817391116] [PMID]
- [14] McCusker RH, McCrea K, Zunich S, Dantzer R, Broussard SR, Johnson RW, et al. Insulin-like growth factor-I enhances the biological activity of brain-derived neurotrophic factor on cerebrocortical neurons. J Neuroimmunol. 2006; 179(1-2):186-90. [DOI:10.1016/j.jneuroim.2006.06.014] [PMID]
- [15] Albert KM, Newhouse PA. Estrogen, stress, and depression: Cognitive and biological interactions. Annu Rev Clin Psychol. 2019; 15:399-423. [DOI:10.1146/annurev-clinpsy-050718-095557] [PMID]
- [16] Baek DC, Kang JY, Lee JS, Lee EJ, Son CG. Linking alterations in estrogen receptor expression to memory deficits and depressive behavior in an ovariectomy mouse model. Sci Rep. 2024; 14(1):6854. [DOI:10.1038/s41598-024-57611-z] [PMID]
- [17] Sartin-Tarm A, Ross MC, Privatsky AA, Cisler JM. Estradiol modulates neural and behavioral arousal in women with posttraumatic stress disorder during a fear learning and extinction task. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020; 5(12):1114-22. [DOI:10.1016/j.bpsc.2020.04.012] [PMID]
- [18] Yang JL, Hodara E, Sriprasert I, Shoupe D, Stanczyk FZ. Estrogen deficiency in the menopause and the role of hormone therapy: Integrating the findings of basic science research with clinical trials. Menopause. 2024; 31(10):926-39. [DOI:10.1097/GME.0000000000002407] [PMID]
- [19] Glover EM, Jovanovic T, Mercer KB, Kerley K, Bradley B, Ressler KJ, et al. Estrogen levels are associated with extinction deficits in women with posttraumatic stress disorder. Biol Psychiatry. 2012; 72(1):19-24. [DOI:10.1016/j.bi-opsych.2012.02.031] [PMID]
- [20] Katrinli S, Oliveira NCS, Felger JC, Michopoulos V, Smith AK. The role of the immune system in posttraumatic stress disorder. Transl Psychiatry. 2022; 12(1):313. [DOI:10.1038/ s41398-022-02094-7] [PMID]

- [21] Glover EM, Jovanovic T, Norrholm SD. Estrogen and extinction of fear memories: Implications for posttraumatic stress disorder treatment. Biol Psychiatry. 2015; 78(3):178-85. [DOI:10.1016/j.biopsych.2015.02.007] [PMID]
- [22] Rieder JK, Kleshchova O, Weierich MR. Estradiol, stress reactivity, and daily affective experiences in trauma-exposed women. Psychol Trauma. 2022; 14(5):738-46. [DOI:10.1037/tra0001113] [PMID]
- [23] Shafia S, Nikkhah F, Akhoundzadeh K. Effect of combination fluoxetine and exercise on prefrontal BDNF, anxiety-like behavior and fear extinction in a female rat model of post-traumatic stress disorder (PTSD): A comparison with male animals. Behav Brain Funct. 2023; 19(1):1. [DOI:10.1186/s12993-023-00204-z] [PMID]
- [24] Mirjalili R, Shokouh E, Dehkordi NS, Afsari R, Shafia S, Rashidy-Pour A. Prior short-term exercise prevents behavioral and biochemical abnormalities induced by single prolonged stress in a rat model of posttraumatic stress disorder. Behav Brain Res. 2022; 428:113864. [DOI:10.1016/j. bbr.2022.113864] [PMID]
- [25] McEwen BS, Nasca C, Gray JD. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016; 41(1):3-23. [DOI:10.1038/ npp.2015.171] [PMID]
- [26] Sheikhzadeh Hesari F, Ebrahimiasl S, Zakeri-Milani P, Honarmand H, Hamdollahi Dashkasan M, Jabbarpour N. Effects of voluntary, involuntary exercise and sertraline on anxiety, social and cognitive behavior in female rat model of post-traumatic stress disorder. Learn Motiv. 2024; 88:102045. [DOI:10.1016/j.lmot.2024.102045]
- [27] Shafia S, Ghadirzadeh E, Fayyaz Shahandashti AS, Ehsani Vostacolaee S. [Comparing the effects of high and moderate intensity exercise on male and female rats with and without PTSD: A behavioral and biochemical study (Persian)]. J Mazandaran Univ Med Sci. 2023; 32(216):20-33. [Link]
- [28] Mousavi SR, Jafari M, Rezaei S, Agha-alinejad H, Sobhani V. Evaluation of the effects of different intensities of forced running wheel exercise on oxidative stress biomarkers in muscle, liver and serum of untrained rats. Lab Anim (NY). 2020; 49(4):119-25. [DOI:10.1038/s41684-020-0503-7] [PMID]
- [29] Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, et al. A handful of details to ensure the experimental reproducibility on the FORCED Running Wheel in Rodents: A systematic review. Front Endocrinol (Lausanne). 2021; 12:638261. [DOI:10.3389/fendo.2021.638261] [PMID]
- [30] Rezaei S, Agha-Alinejad H, Molanouri Shamsi M, Jafari M, Azevedo Voltarelli F, Naderi A, et al. Evaluation of efforts in untrained Wistar rats following exercise on forced running wheel at maximal lactate steady state. J Exerc Nutrition Biochem. 2017; 21(1):26-32. [DOI:10.20463/jenb.2017.0040] [PMID]
- [31] Babaei P, Azari HB. Exercise training improves memory performance in older adults: A narrative review of evidence and possible mechanisms. Front Hum Neurosci. 2022; 15:771553. [DOI:10.3389/fnhum.2021.771553] [PMID]

- [32] Yoon E-J, Park D. [Effects of resistance exercise on mrna expression of brain neuroplasticity related factors in hippocampus and cognitive function in ovariectomized rats (Korean)]. Brain, Digital, & Learning. 2021;11(4):577-87. [DOI:10.31216/BDL.20210037]
- [33] Yoon EJ, Choi Y, Park D. Improvement of cognitive function in ovariectomized rats by human neural stem cells over-expressing choline acetyltransferase via secretion of NGF and BDNF. Int J Mol Sci. 2022; 23(10):5560. [DOI:10.3390/ijms23105560] [PMID]
- [34] Albrahim T, Alangry R, Alotaibi R, Almandil L, Alburikan S. Effects of regular exercise and intermittent fasting on neurotransmitters, inflammation, oxidative stress, and brainderived neurotrophic factor in cortex of ovariectomized rats. Nutrients. 2023; 15(19):4270. [DOI:10.3390/nu15194270] [PMID]
- [35] Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne). 2023; 14:1202349. [DOI:10.3389/fendo.2023.1202349] [PMID]
- [36] Müller ST, Keiler AM, Kräker K, Zierau O, Bernhardt R. Influence of estrogen on individual exercise motivation and bone protection in ovariectomized rats. Lab Anim. 2018; 52(5):479-89. [DOI:10.1177/0023677218756455] [PMID]
- [37] Ravi M, Stevens JS, Michopoulos V. Neuroendocrine pathways underlying risk and resilience to PTSD in women. Front Neuroendocrinol. 2019; 55:100790. [DOI:10.1016/j. yfrne.2019.100790] [PMID]
- [38] Eshaghi-Gorji R, Talebpour Amiri F, Mirzae M, Shafia S, Akhoundzadeh K. Effects of the combination of bone marrow stromal cells and exercise on corticosterone, BDNF, IGF-1, and anxiety-like behaviour in a rat model of post-traumatic stress disorder: Comparable effects of exercise. World J Biol Psychiatry. 2024; 25(7):370-83. [DOI:10.1080/15622975. 2024.2382693] [PMID]
- [39] Shafia S, Vafaei AA, RashidRy-Pour A. [Effects of moderate treadmill exercise and fluoxetine on spatial memory and serum BDNF levels in an animal model of post-traumatic stress disorder (Persian)]. J Mazandaran Univ Med Sci. 2019; 29(179):1-17. [Link]
- [40] Mohammadi M, Hosseini-Khah Z, Kalantari Z, Jahandar M, Sadeghimahalli F, Shafia S. [An investigation of the role of sex difference in the effect of fluoxetine on behavioral and biochemical changes in male and female rats exposed to stress (Persian)]. J Mazandaran Univ Med Sci. 2024; 34(232):25-37. [Link]
- [41] Ahmadi-Noorbakhsh S, Mirabzadeh Ardakani E, Sadighi J, Aldavood SJ, Farajli Abbasi M, Farzad-Mohajeri S, et al. Guideline for the care and use of laboratory animals in Iran. Lab Anim (NY). 2021; 50(11):303-5. [DOI:10.1038/s41684-021-00871-3] [PMID]
- [42] Chen CC, Chang MW, Chang CP, Chan SC, Chang WY, Yang CL, et al. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model. Braz J Med Biol Res. 2014; 47(10):858-68. [DOI:10.1590/1414-431X20143754] [PMID]

- [43] Toval A, Baños R, De la Cruz E, Morales-Delgado N, Pallarés JG, Ayad A, et al. Habituation training improves locomotor performance in a forced running wheel system in rats. Front Behav Neurosci. 2017; 11:42. [DOI:10.3389/fn-beh.2017.00042] [PMID]
- [44] Zare Z, Shafia S, Mohammadi M. Thyroid hormone deficiency affects anxiety-related behaviors and expression of hippocampal glutamate transporters in male congenital hypothyroid rat offspring. Horm Behav. 2024; 162:105548. [DOI:10.1016/j.yhbeh.2024.105548] [PMID]
- [45] De Gasperi R, Gama Sosa MA, Perez Garcia G, Perez GM, Pryor D, Morrison CL, et al. Metabotropic glutamate receptor 2 expression is chronically elevated in male rats with post-traumatic stress disorder related behavioral traits following repetitive low-level blast exposure. J Neurotrauma. 2024; 41(5-6):714-33. [DOI:10.1089/neu.2023.0252] [PMID]
- [46] Murai T, Okuda S, Tanaka T, Ohta H. Characteristics of object location memory in mice: Behavioral and pharmacological studies. Physiol Behav. 2007; 90(1):116-24. [DOI:10.1016/j. physbeh.2006.09.013] [PMID]
- [47] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54. [DOI:10.1016/0003-2697(76)90527-3] [PMID]
- [48] Crombie KM, Adams TG, Dunsmoor JE, Greenwood BN, Smits JA, Nemeroff CB, et al. Aerobic exercise in the treatment of PTSD: An examination of preclinical and clinical laboratory findings, potential mechanisms, clinical implications, and future directions. J Anxiety Disord. 2023; 94:102680. [DOI:10.1016/j.janxdis.2023.102680] [PMID]
- [49] van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005; 25(38):8680-5. [DOI:10.1523/JNEU-ROSCI.1731-05.2005] [PMID]
- [50] Islam MR, Valaris S, Young MF, Haley EB, Luo R, Bond SF, et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat Metab. 2021; 3(8):1058-70. [DOI:10.1038/s42255-021-00438-z] [PMID]
- [51] de Sousa Fernandes MS, Ordônio TF, Santos GCJ, Santos LER, Calazans CT, Gomes DA, et al. Effects of physical exercise on neuroplasticity and brain function: A systematic review in human and animal studies. Neural Plast. 2020; 2020:8856621. [DOI:10.1155/2020/8856621] [PMID]
- [52] Patten AR, Yau SY, Fontaine CJ, Meconi A, Wortman RC, Christie BR. The benefits of exercise on structural and functional plasticity in the rodent hippocampus of different disease models. Brain Plast. 2015; 1(1):97-127. [DOI:10.3233/ BPL-150016] [PMID]
- [53] Arida RM, Teixeira-Machado L. The contribution of physical exercise to brain resilience. Front Behav Neurosci. 2021; 14:626769. [DOI:10.3389/fnbeh.2020.626769] [PMID]
- [54] Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, et al. Molecular mechanisms underlying physical exerciseinduced brain BDNF overproduction. Front Mol Neurosci. 2023; 16:1275924. [DOI:10.3389/fnmol.2023.1275924] [PMID]

- [55] Walser M, Karlsson L, Motalleb R, Isgaard J, Kuhn HG, Svensson J, et al. Running in mice increases the expression of brain hemoglobin-related genes interacting with the GH/ IGF-1 system. Sci Rep. 2024; 14(1):25464. [DOI:10.1038/ s41598-024-77489-1] [PMID]
- [56] Jaberi S, Fahnestock M. Mechanisms of the beneficial effects of exercise on brain-derived neurotrophic factor expression in Alzheimer's Disease. Biomolecules. 2023; 13(11):1577. [DOI:10.3390/biom13111577] [PMID]
- [57] Cheng SM, Lee SD. Exercise training enhances BDNF/ TrkB signaling pathway and inhibits apoptosis in diabetic cerebral cortex. Int J Mol Sci. 2022;23(12):6740. [DOI:10.3390/ ijms23126740] [PMID]
- [58] Dadkhah M, Saadat M, Ghorbanpour AM, Moradikor N. Experimental and clinical evidence of physical exercise on BDNF and cognitive function: A comprehensive review from molecular basis to therapy. Brain Behav Immun Integr. 2023; 3:100017. [DOI:10.1016/j.bbii.2023.100017]
- [59] Wan C, Shi L, Lai Y, Wu Z, Zou M, Liu Z, et al. Long-term voluntary running improves cognitive ability in developing mice by modulating the cholinergic system, antioxidant ability, and BDNF/PI3K/Akt/CREB pathway. Neurosci Lett. 2024; 836:137872. [DOI:10.1016/j.neulet.2024.137872] [PMID]
- [60] Griesbach GS, Tio DL, Vincelli J, McArthur DL, Taylor AN. Differential effects of voluntary and forced exercise on stress responses after traumatic brain injury. J Neurotrauma. 2012; 29(7):1426-33. [DOI:10.1089/neu.2011.2229] [PMID]
- [61] Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The neuroprotective effects of exercise: Maintaining a healthy brain throughout aging. Brain Plast. 2018; 4(1):17-52. [DOI:10.3233/BPL-180069] [PMID]
- [62] Chen J, Zhou R, Feng Y, Cheng L. Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther. 2022; 7(1):383. [DOI:10.1038/s41392-022-01233-2] [PMID]
- [63] Ma X, Hamadeh MJ, Christie BR, Foster JA, Tarnopolsky MA. Impact of treadmill running and sex on hippocampal neurogenesis in the mouse model of amyotrophic lateral sclerosis. Plos One. 2012; 7(4):e36048. [DOI:10.1371/journal.pone.0036048] [PMID]
- [64] de Assis GG, de Sousa MBC, Murawska-Ciałowicz E. Sex steroids and brain-derived neurotrophic factor interactions in the nervous system: A comprehensive review of scientific data. Int J Mol Sci. 2025; 26(6):2532. [DOI:10.3390/ ijms26062532] [PMID]
- [65] MacDonald TL, Ritchie KL, Davies S, Hamilton MJ, Cervone DT, Dyck DJ. Exercise training is an effective alternative to estrogen supplementation for improving glucose homeostasis in ovariectomized rats. Physiol Rep. 2015; 3(11):e12617. [DOI:10.14814/phy2.12617] [PMID]
- [66] Wiseman M, Hinks M, Hallett D, Blundell J, Sweeney E, Thorpe CM, et al. Evidence that ovarian hormones, but not diet and exercise, contribute to the sex disparity in posttraumatic stress disorder. J Psychiatr Res. 2023; 168:213-20. [DOI:10.1016/j.jpsychires.2023.10.048] [PMID]

- [67] Luine V. Estradiol: Mediator of memories, spine density and cognitive resilience to stress in female rodents. J Steroid Biochem Mol Biol. 2016; 160:189-95. [DOI:10.1016/j.jsbmb.2015.07.022] [PMID]
- [68] Bi X, Fang J, Jin X, Thirupathi A. The interplay between BDNF and PGC-1 alpha in maintaining brain health: Role of exercise. Front Endocrinol (Lausanne). 2024; 15:1433750. [DOI:10.3389/fendo.2024.1433750] [PMID]
- [69] Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): A promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci. 2023; 13(1):16. [DOI:10.1186/s13578-023-00966-z] [PMID]
- [70] Réthelyi JM, Vincze K, Schall D, Glennon J, Berkel S. The role of insulin/IGF1 signalling in neurodevelopmental and neuropsychiatric disorders - evidence from human neuronal cell models. Neurosci Biobehav Rev. 2023; 153:105330. [DOI:10.1016/j.neubiorev.2023.105330] [PMID]
- [71] Romero Garavito A, Díaz Martínez V, Juárez Cortés E, Negrete Díaz JV, Montilla Rodríguez LM. Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Front Neurol. 2024; 15:1505879. [DOI:10.3389/fneur.2024.1505879] [PMID]
- [72] Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015; 11(6):1164-78. [DOI:10.5114/aoms.2015.56342] [PMID]
- [73] Shafia S, Mardani M, Mirzaee M, Talebpour Amiri F. [Effects of physical activity on cognitive function and neuroplasticity in SPS Rats: Hippocampal changes and BDNF Level (Persian)]. J Mazandaran Univ Med Sci. 2024; 34(236):14-28. [Link]
- [74] Ceylan H, Silva AF, Ramirez-Campillo R, Murawska-Ciałowicz E. Exploring the effect of acute and regular physical exercise on circulating brain-derived neurotrophic factor levels in individuals with obesity: A comprehensive systematic review and meta-analysis. Biology (Basel). 2024; 13(5):323. [DOI:10.3390/biology13050323] [PMID]
- [75] Mohammadi M, Jahandar M, Kalantari Z. [The effects of high-intensity exercise on anxiety-like behaviors, fear extinction, neurotrophic factors, and expression of apoptosisrelated factors induced by stress in rat brain (Persian)]. J Mazandaran Univ Medical Sci. 2023; 33(225):16-30. [Link]