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Deciphering APOE Gene Interaction Networks in 
Alzheimer’s Disease: A Comprehensive Analysis of Genetic 
Factors and Their Potential as Therapeutic Targets

Background: Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder characterized by 
progressive cognitive decline. The apolipoprotein E (APOE) gene, particularly its ε4 allele, is a well-
established genetic risk factor for late-onset AD. This study aimed to decipher APOE’s interaction 
networks to advance AD diagnostics and therapeutics.

Materials and Methods: We conducted an analytical study comparing gene expression data and 
genetic factors between AD patients and healthy controls. Candidate genes were identified through 
comprehensive literature reviews and bioinformatics database searches, prioritizing genes validated 
by in vivo, in vitro, or in silico evidence. Interaction networks were constructed using MATLAB 
software, version R2025a and R software, version 4.5.1.

Results: Network analysis of AD-associated proteins—using centrality measures (maximum 
neighborhood component (MNC), degree, betweenness, closeness, and radiality)—identified TREM2, 
BDNF, NCSRN, SORL1, and TNF as key components within the APOE network. TREM2 and TNF 
regulate neuroinflammatory responses, BDNF supports neurotrophic activity and synaptic plasticity, 
NCSRN modulates Notch signaling, and SORL1 is critical for amyloid-beta (Aβ) metabolism. These 
findings highlight AD’s multifactorial nature and reveal potential therapeutic targets and biomarkers.

Conclusion: Our results align with prior research, reinforcing the roles of TREM2 (microglial 
activity), BDNF (neuroprotection), NCSRN (signaling pathways), and SORL1 (Aβ regulation) in AD 
pathogenesis. By mapping APOE’s interaction network, this study provides a foundation for future 
therapeutic innovations.
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Introduction

lzheimer’s disease (AD) is a progressive 
neurodegenerative disorder affecting mil-
lions worldwide, characterized by cogni-
tive decline, memory impairment, and 
behavioral disturbances [1, 2]. With the 

aging global population, AD has emerged as a critical 
public health challenge, underscoring the urgent need to 
elucidate its molecular mechanisms. Despite decades of 
research, AD’s etiology remains complex and multifac-
torial, involving intricate interactions between genetic 
predisposition, environmental factors, and pathological 
processes [3].

AD is broadly classified into early-onset AD (EOAD) 
and late-onset AD (LOAD) based on age of onset. EOAD 
manifests before the age of 65 and is frequently linked 
to autosomal dominant mutations in amyloid precursor 
protein (APP), Presenilin-1 (PSEN1), and PSEN2 [4, 5]. 
These mutations disrupt amyloid-beta (Aβ) metabolism, 
promoting excessive plaque deposition and subsequent 
neuronal dysfunction [6]. In contrast, LOAD accounts 
for the majority of cases and typically occurs after the 
age of 65, arising from complex interactions between 
genetic susceptibility (e.g. the apolipoprotein E (APOE) 
ε4 allele) and environmental risk factors. Notably, the 
APOE ε4 allele represents the strongest genetic risk 
factor for LOAD, driving pathogenesis through mecha-
nisms, including impaired Aβ clearance, exacerbated 
neuroinflammation, and synaptic dysfunction [7, 8].

The pathobiology of AD is characterized by hallmark 
molecular and cellular alterations, including extracellu-
lar Aβ plaque deposition, intraneuronal neurofibrillary 
tangles composed of hyperphosphorylated tau protein, 
progressive synaptic dysfunction, mitochondrial dys-
regulation, oxidative stress, and chronic neuroinflamma-
tion, all of which collectively contribute to neurodegen-
eration and cognitive decline [9, 10]. Aβ, a proteolytic 
fragment derived from APP processing, progressively 
accumulates as extracellular plaques that impair neuro-
nal signaling and initiate neurotoxic pathways. These 
Aβ aggregates disrupt synaptic plasticity while concur-
rently activating microglia-mediated neuroinflammatory 
responses, creating a vicious cycle that amplifies neuro-
degeneration [11-13]. The accumulation of Aβ plaques 
demonstrates a robust correlation with key pathological 
hallmarks of AD, including progressive neurodegenera-
tion, synaptic depletion, and measurable cognitive de-
cline. These consistent pathological associations have 
established dysregulated Aβ metabolism as a pivotal re-
search focus in AD therapeutics and biomarker develop-

ment [14]. Tau pathology represents a critical component 
of AD progression, characterized by the accumulation of 
hyperphosphorylated tau proteins that aggregate into 
intracellular neurofibrillary tangles. These pathological 
inclusions disrupt microtubule stability, impair axonal 
transport mechanisms, and ultimately drive progres-
sive neuronal degeneration and synaptic failure [15, 16]. 
Under physiological conditions, tau protein maintains 
microtubule stability and facilitates axonal transport. In 
AD, however, pathological hyperphosphorylation of tau 
disrupts its normal function, leading to: (1) decreased 
microtubule-binding affinity, (2) dissociation from mi-
crotubules, and 3) subsequent accumulation of insoluble 
aggregates within neurons [17]. This pathological cas-
cade severely compromises axonal integrity, ultimately 
leading to synaptic dysfunction and progressive neuro-
degeneration. Concurrently, chronic neuroinflamma-
tion - mediated by persistently activated microglia and 
reactive astrocytes - constitutes a central driver of AD 
pathogenesis. This self-sustaining inflammatory state, 
perpetuated by pro-inflammatory cytokine cascades and 
oxidative stress mechanisms, not only exacerbates neu-
ronal loss but also synergistically enhances Aβ toxicity, 
creating a vicious cycle of disease progression [18, 19]. 
In AD, microglia - the brain’s resident immune cells - un-
dergo pathological overactivation, triggering excessive 
release of pro-inflammatory cytokines, including tumor 
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and 
IL-6. This chronic neuroinflammatory response contrib-
utes to synaptic dysfunction, promotes neuronal apop-
tosis, and exacerbates Aβ toxicity, thereby accelerating 
disease progression [20]. Although neuroinflammation 
initially serves a neuroprotective function by promot-
ing debris clearance and tissue repair, chronic microglial 
activation induces a maladaptive cascade characterized 
by (a) excessive reactive oxygen species production, (b) 
progressive synaptic impairment, and (c) activation of 
apoptotic pathways - collectively exacerbating neurode-
generative processes in AD [21]. APOE ε4 genotype is 
associated with amplified neuroinflammatory responses, 
including elevated pro-inflammatory cytokine produc-
tion and exaggerated microglial activation, demonstrat-
ing a clear genetic predisposition for immune dysregu-
lation in AD pathogenesis [22, 23]. The APOE gene, 
located on chromosome 19, encodes apolipoprotein E, 
a critical lipid transport protein involved in cholesterol 
homeostasis and neuronal repair [24]. APOE exists in 
three major allelic forms: ε2, ε3, and ε4, each exerting 
distinct effects on AD risk. The ε4 allele is the strongest 
genetic risk factor for LOAD, promoting Aβ aggrega-
tion, impairing clearance mechanisms, and intensifying 
neuroinflammatory responses [25]. APOE influences 
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disease pathology through multiple mechanisms, includ-
ing Aβ clearance, lipid transport, and synaptic repair, and 
inflammatory regulation. APOE ε4 impairs Aβ clear-
ance, resulting in excessive plaque deposition and neu-
ronal toxicity [26, 27]. Additionally, APOE plays a role 
in brain lipid metabolism, affecting synaptic plasticity 
and neuroprotection [28]. Finally, APOE ε4 is associated 
with increased neuroinflammation, exacerbating disease 
progression [29].

Given its critical involvement in AD, deciphering 
APOE interaction networks is essential for understand-
ing disease pathogenesis and identifying potential 
therapeutic targets. Network-based approaches allow 
researchers to map gene interactions and pinpoint key 
regulatory nodes, providing insights into pathways that 
may be leveraged for intervention [30]. Recent advances 
in bioinformatics, high-throughput genomic analysis, 
and computational network modeling have revolution-
ized our ability to identify APOE-associated pathways 
in AD pathogenesis. The integration of multi-omics data 
(including transcriptomic and proteomic datasets) has 
enabled systematic mapping of molecular interactions, 
revealing novel therapeutic targets and biomarkers.

This study employed an integrative computational 
approach to: (a) construct a comprehensive APOE in-
teraction network, (b) identify critical regulatory hubs 
through network centrality analysis, and (c) characterize 
their functional roles in AD progression. By elucidat-
ing these complex gene-protein relationships, our find-
ings provide mechanistic insights into APOE-mediated 
pathology, potential diagnostic biomarkers with clinical 
translation potential, and novel targets for therapeu-
tic intervention. These results significantly advance 
the framework for precision medicine in AD, offering 
data-driven strategies for developing targeted therapies 
against this complex neurodegenerative disorder.

Materials and Methods

Study population and sampling

This analytical study was conducted on gene expres-
sion data derived from AD patients and a control group 
of healthy individuals. The datasets utilized in this re-
search were obtained from established bioinformatics 
repositories, ensuring the inclusion of validated genetic 
profiles for comparative analysis.

Data collection and network construction

Gene expression data relevant to AD were systemati-
cally retrieved from well-recognized bioinformatics da-
tabases, including NCBI, SWISS-Prot, and Diseasome. 
These repositories provided access to curated gene ex-
pression datasets from both AD patients and healthy 
individuals, serving as the gold standard for identifying 
disease-associated genetic patterns. The collected data 
formed the basis for constructing an interaction network, 
enabling the exploration of gene-to-gene relationships 
within AD pathology.

Gene selection and expression data extraction

Candidate genes implicated in AD were identified 
through a multi-tiered approach that combined literature 
reviews and bioinformatics database searches. Genes 
were included in the study if they had been validated 
through at least one of the in vivo, in vitro, or in silico 
methodologies. Gene expression data were subsequent-
ly extracted from bioinformatics repositories using es-
tablished identifiers, such as Entrez Gene and UniProt, 
ensuring consistency in data representation across dif-
ferent platforms.

Text mining approach and gene name normaliza-
tion

A comprehensive text mining strategy was employed 
to extract, standardize, and normalize gene names from 
published literature and biomedical databases. Due to the 
variability in gene nomenclature, stringent procedures 
were implemented to ensure accuracy in gene identifica-
tion and prevent ambiguity.

Automated text parsing and entity recognition: Bio-
medical literature was processed using natural language 
processing (NLP) techniques to extract gene-related 
terms. Named entity recognition (NER) algorithms were 
applied to identify gene names within unstructured text, 
filtering out non-biological entities that could confound 
results.

Standardization of gene nomenclature: Given that gene 
names often have multiple synonyms across different 
sources, normalization was performed using authorita-
tive databases, such as the HUGO Gene Nomenclature 
Committee (HGNC), Entrez Gene, and UniProt. Cross-
referencing these databases ensured that each gene was 
assigned a standardized identifier, resolving discrepan-
cies due to alternative naming conventions.
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Contextual disambiguation of gene names: Some gene 
names overlap with generic terms (e.g. “APP” referring 
to both APP and general application-related terminol-
ogy). To address this challenge, gene mentions were an-
alyzed in the context of surrounding biomedical terms, 
improving accuracy in identification and avoiding false 
matches. 

Cross-validation with multiple databases: Extracted 
gene names were systematically matched across mul-
tiple bioinformatics repositories, including OMIM, 
GeneCards, and STRING, to eliminate inconsistencies. 
High-confidence matches were retained for further net-
work analysis.

Manual verification of critical genes: Although au-
tomated methods provided primary gene recognition, 
manual curation was performed to validate key findings, 
ensuring that false-positive identifications were mini-
mized.

Gene-disease association (GDA) scoring

Candidate genes were prioritized based on a structured 
scoring model that integrated multiple sources of valida-
tion, as follows:

Expert-reviewed sources: A weight was assigned based 
on the number of validated sources supporting each 
GDA.

Model organism studies: Genes with evidence from 
mouse or rat datasets (CTD, MGD, RGD) were assigned 
additional weight.

Clinical databases: Validation from human-specific 
genomic databases (HPO, CLINVAR, GWASCAT, 
GWASDB) contributed to ranking scores.

Publication frequency: Genes with extensive support in 
published literature were prioritized, ensuring relevance 
in the study’s findings.

Network analysis and structural evaluation

Interaction networks for candidate genes were mapped 
based on expression profiles using the Gephi platform. 
Network edges were weighted according to gene ex-
pression levels, allowing for structural analysis us-
ing centrality measures, such as degree, betweenness, 
closeness, and radiality. Comparative network model-
ing between AD patients and healthy individuals was 
performed to identify key regulatory nodes within the 
disease pathology.

Statistical and computational analysis

All statistical computations were conducted using 
MATLAB software, version R2025a and R software, 
version 4.5.1., integrating machine learning algorithms 
designed for bioinformatics applications. Descrip-
tive and inferential statistical methods were applied to 
quantify gene interactions, assess network stability, and 
extract biomarkers relevant to AD pathology. These 
analyses provided insights into the hierarchical structure 
of gene interaction networks and their potential signifi-
cance as therapeutic targets (Figure 1).

These interactions were determined based on at least 
one type of study: in vivo, in vitro, or in silico. The genes 
were identified according to the GDA criteria as shown 
in Table 1. 

Each gene has a GDA score of 1, indicating a strong 
association with the disease. This emphasizes the impor-
tance of these genes in the pathogenesis and progression 
of AD.

Results

Identification of essential nodes 

In the context of interaction networks, the term “hub” 
refers to key nodes within the network that are deter-
mined based on one of the centrality measures. These 
essential nodes play a crucial role in the network’s struc-
ture. In biological networks, the concept of identifying 
hub nodes involves determining the influential compo-
nents within the network that can serve as key genes or 
proteins (essential) and may be introduced as biomark-
ers. These biomarkers can aid in the diagnosis or treat-
ment of diseases.

Network centrality

Centrality measures quantify the importance of nodes 
within a network. Below, we defined and applied multi-
ple centrality parameters to identify critical genes in AD.

Network structural parameters 

Maximum neighborhood component (MNC) 

Each node, such as node aa, has a number of neighbors 
N(a) that are directly connected to it. The MNC score for 
node aa was defined as the size of the largest component 
connected to node aa. 
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Based on this parameter, the highest scores were attrib-
uted to the biomarkers mentioned in Table 2. The inter-
action network is illustrated in Figure 2. 

In the constructed interaction network, each node rep-
resents a gene, and the edges between them indicate 
physical or functional interactions. These interactions 
are determined based on at least one type of study: In 
vivo, in vitro, or in silico. The genes are identified ac-
cording to the MNC criteria, with higher scores indicat-
ing more significant roles as biomarkers. The ranking 
and MNC scores of the genes are detailed in Table 2. 

Degree centrality

Degree centrality counts the number of edges con-
nected to a node, reflecting its local influence. In our AD 
network, high-degree genes (Table 3) represented highly 
connected biomarkers, such as APP, APOE, and PSEN1, 
suggesting their pivotal roles in disease pathways.

The interaction network for these top 10 components 
with the highest degree scores is illustrated in Figure 3. 

In the constructed interaction network, each node rep-
resents a gene, and the edges between them indicate 
physical or functional interactions. These interactions are 
determined based on at least one type of study: In vivo, 

in vitro, or in silico. The genes are identified according 
to their degree scores, which represent the number of 
connections (edges) each gene (node) has within the net-
work. Higher degree scores indicate genes that are more 
central and possibly more influential within the network. 
The ranking and degree scores of the genes are detailed 
in Table 3, highlighting the most effective biomarkers for 
AD. The interaction network illustrates the connections 
between these top 10 genes, providing insights into their 
roles and interactions in the disease’s pathology. 

Eigenvector centrality

Unlike degree centrality, eigenvector centrality 
weights a node’s connections based on the centrality of 
its neighbors. A node is more central if linked to other 
central nodes. This measure highlights genes embed-
ded within influential subnetworks (e.g. APOE and 
TREM2), underscoring their systemic importance be-
yond direct connections.

Closeness centrality

Closeness measures how quickly a node can reach oth-
ers via shortest paths. Genes with high closeness (Table 4, 
Figure 4), like BACE1 and PSEN2, may act as communi-
cation hubs, facilitating efficient signaling in AD-related 
processes. The interaction network is shown in Figure 4. 

Figure 1. In the constructed interaction network, each node represents a gene, and the edges between them indicate physical 
or functional interactions.

APOE Gene Interaction Networks in Alzheimer’s Disease
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Figure 2. The interaction network of AD genes based on MNC scores 

Figure 3. The interaction network of AD genes based on degree scores
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In the constructed interaction network, each node rep-
resents a gene, and the edges between them indicate 
physical or functional interactions. These interactions 
are determined based on at least one type of study: In 
vivo, in vitro, or in silico. The genes are identified ac-
cording to their closeness centrality scores, which mea-
sure the sum of the shortest path lengths from each gene 
to all other genes in the network. Higher closeness cen-
trality scores indicate genes that are more central within 
the network, suggesting their potential significance and 
influence in the disease’s biological processes. The 
ranking and closeness centrality scores of the genes are 

detailed in Table 4, highlighting the most crucial bio-
markers for AD. The interaction network illustrates the 
connections and centrality of these top 10 genes, pro-
viding insights into their roles and interactions in the 
pathology of the disease. 

Radiality 

Radiality is a measure that identifies the node with the 
shortest distance to other nodes in its neighboring set. 
The highest scores based on this criterion were calcu-
lated for the following genes: 

Table 2. MNC scores for the interaction network of AD genes 

Biomarker Rank 

APP 1 

PSEN1 2 

APOE 3 

PSEN2 4 

BACE1 5 

TREM2 6 

BDNF 7 

NCSTN 8 

SORL1 9 

TNF 10 

Table 1. The GDA scores for each gene in the AD protein interaction network 

Gene Name GDA Score 

PSEN1 1 

APP 1 

APOE 1 

ACHE 1 

TREM2 1 

DISC1 1 

PSEN2 1 

GRN 1 

TNF 1 

BDNF 1 

APOE Gene Interaction Networks in Alzheimer’s Disease
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The interaction network of AD genes based on the radi-
ality measure is illustrated in Figure 5.

In the constructed interaction network, each node rep-
resents a gene, and the edges between them indicate 

physical or functional interactions. These interactions 
are determined based on at least one type of study: In 
vivo, in vitro, or in silico. The genes are identified ac-
cording to their radiality scores, which measure the 
shortest distance from each gene to all other genes in its 

Table 3. Degree scores for the interaction network of AD genes 

Biomarker Rank 

APP 1 

PSEN1 2 

APOE 3 

PSEN2 4 

BACE1 5 

TREM2 6 

BDNF 7 

NCSRN 8 

SORL1 9 

TNF 10 

Figure 4. The interaction network of AD genes based on closeness centrality scores
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neighboring set. Higher radiality scores indicate genes 
that are centrally located within the network, suggesting 
their potential significance and influence in the biologi-
cal processes of AD. The ranking and radiality scores of 
the genes are detailed in Table 5, highlighting the most 
critical biomarkers for AD. The interaction network il-
lustrates the connections and centrality of these top 10 
genes, providing insights into their roles and interactions 
in the pathology of the disease. 

Betweenness centrality

Betweenness identifies nodes that bridge disparate net-
work regions (Table 6). High-betweenness genes (e.g. 
TNF, BDNF) are potential bottlenecks; their disruption 
could impair network integrity.

The interaction network of AD based on betweenness 
centrality is illustrated in Figure 6: 

Figure 6. The interaction network of AD genes based on betweenness centrality scores

Figure 5. The interaction network of AD genes based on radiality score

APOE Gene Interaction Networks in Alzheimer’s Disease

Res Mol Med, 2024; 12(3):75-92

http://rmm.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en


84

In the constructed interaction network, each node rep-
resents a gene, and the edges between them indicate 
physical or functional interactions. These interactions 
are determined based on at least one type of study: in 
vivo, in vitro, or in silico. The genes are identified ac-
cording to their betweenness centrality scores, which 
measure the extent to which each gene lies on the short-
est paths between other genes in the network. Higher 
betweenness centrality scores indicate genes that are 
critical for the transfer of information within the net-
work. The ranking and betweenness centrality scores of 
the genes are detailed in Table 6, highlighting the most 

important biomarkers for AD. The interaction network 
illustrates the connections and centrality of these top 10 
genes, providing insights into their roles and interactions 
in the pathology of the disease. 

Based on the results of the interaction network analy-
sis of candidate proteins in AD, calculated using five 
indicators—MNC, degree, betweenness, closeness, 
and radiality—the ten proteins APP, PSEN1, APOE, 
PSEN2, BACE1, TREM2, BDNF, NCSTN, SORL1, 
and TNF had the highest frequency and confirmation by 
these five indicators. 

Table 5. Radiality scores for the interaction network of AD genes 

Biomarker Rank 

APP 1 

PSEN1 2 

APOE 3 

PSEN2 4 

BACE1 5 

TREM2 6 

BDNF 7 

NCSTN 8 

SORL1 9 

TNF 10 

Table 4. Closeness centrality scores for the interaction network of AD genes 

Biomarker Rank 

APP 1 

PSEN1 2 

APOE 3 

PSEN2 4 

BACE1 5 

TREM2 6 

BDNF 7 

NCSTN 8 

SORL1 9 

TNF 10 
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Key biomarkers in AD

Integrating centrality measures from network analy-
sis, we identified 10 high-confidence biomarkers (APP, 
PSEN1, APOE, PSEN2, BACE1, TREM2, BDNF, NC-
STN, SORL1, TNF), recurrently ranked across metrics. 
Among these, APP and PSEN1/PSEN2 (presenilins 1 
and 2) are critically implicated in Aβ processing, while 
APOE isoforms modulate disease risk, particularly the 
ApoE4 variant. These genes exhibit distinct expression 
patterns (e.g. APP in amniocytes, PSEN1 in peripheral 

blood mononuclear cells, APOE in the liver) and are as-
sociated with familial AD, hereditary amyloidosis, and 
other neurodegenerative pathologies. Their mechanisms 
range from γ-secretase regulation (PSEN1/2) to mem-
brane maintenance (BACE1) and immunosuppressive 
pathways (APOE), highlighting their dual roles as diag-
nostic markers and therapeutic targets. The consistency 
of their prominence across network metrics underscores 
their potential for advancing biomarker-driven interven-
tions, as further detailed in Table 7.

Table 7. Commonly proposed key genes based on 5 bioinformatics indicators 

Gene Full Name Chromosomal Location Highest 
Expression 

Associated 
Diseases Mechanism Ref. 

APP 
Amyloid-

beta precursor 
protein 

21q21.3 Amniocytes 

Hereditary amy-
loidosis with 	
cerebral hemor-

rhage 

COX inhibitors, 
anticoagulants, and 
nonsteroidal anti-

inflammatory agents 

[31] 

PSEN1 Presenilin 1 14q24.2 
Peripheral blood 

mononuclear 
cells 

Familial 
AD, spastic 

paraparesis, 
apraxia 

γ-secretase inhibitors 
are essential for mem-

brane structure and 
maintenance 

[32] 

APOE Apolipopro-
tein E 19q13.32 Liver AD related to 

Apoe4 
Immunosuppressive agents, kinase inhibi-

tors, mTOR inhibitors [33] 

PSEN2 Presenilin 2 1q42.13 Pancreas 

Autosomal 
dominant early-

onset familial 
AD

Potent oral active γ secretase inhibitors [34] 

BACE1 Beta-
secretase 1 11q23.3 Pancreas 

Late-onset 
central nervous 
system syphilis 

Essential for membrane structure and 
maintenance [35] 

Table 6. Betweenness centrality scores for the interaction network of AD genes 

Biomarker Rank 

APP 1 

APOE 2 

PSEN1 3 

PSEN2 4 

SORL1 5 

BACE1 6 

BDNF 7 

TREM2 8 

TNF 9 

NCSTN 10 

APOE Gene Interaction Networks in Alzheimer’s Disease
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Discussion 

The present study identified APP, PSEN1, APOE, 
PSEN2, and BACE1 as key genes in AD pathogenesis 
through a comprehensive network analysis using cen-
trality measures (MNC, degree, betweenness, closeness, 
and radiality). These findings align with established 
literature, reinforcing their critical roles in AD mecha-
nisms.

APP, a central player in AD, undergoes proteolytic 
cleavage by BACE1 and γ-secretase to generate Aβ pep-
tides, consistent with the amyloid cascade hypothesis 
[36]. Our results corroborate prior studies demonstrating 
that APP mutations (e.g. V715M) increase Aβ42 produc-
tion, accelerating plaque formation and neurodegenera-
tion [37]. Notably, the interaction between APP and cell 
adhesion molecules, as observed in our network, further 
supports findings by Pfundstein et al., which suggest that 
extracellular matrix proteins modulate APP processing 
and Aβ aggregation [38].

Similarly, BACE1 emerged as a high-impact gene in our 
analysis, mirroring its well-documented role in initiating 
amyloidogenic cleavage of APP [39]. Pharmacological 
inhibition of BACE1 has been explored as a therapeutic 
strategy, though clinical trials have faced challenges due 
to off-target effects [40]. Our data reinforce the impor-
tance of targeting BACE1 while highlighting the need for 
precision in drug development to preserve physiological 
APP functions.

The inclusion of APOE in our top-ranked genes further 
validates its established association with LOAD risk, 
particularly the ε4 allele [41]. Prior studies have linked 
APOEε4 to impaired Aβ clearance and neuroinflam-
mation, which our network analysis indirectly supports 
through its interactions with inflammatory mediators, 
like TREM2 and TNF [42].

PSEN1 (presenilin 1) 

The centrality analysis in our study identified PSEN1 
as a critical node in AD pathogenesis, confirming its 
well-established role in familial AD through gamma-
secretase-mediated amyloidogenic processing. Our find-
ings corroborate extensive literature demonstrating that 
PSEN1 mutations (n=300+) predominantly increase the 
Aβ42:Aβ40 ratio [42], consistent with the amyloid cas-
cade hypothesis of AD pathogenesis [43, 44]. Notably, 
the pleiotropic effects of PSEN1 mutations observed in 
our network analysis mirror the diverse clinical pheno-
types reported in mutation carriers, ranging from typical 

EOAD to frontotemporal dementia and Lewy body de-
mentia variants [45].

The current results extend previous reports by high-
lighting PSEN1’s involvement in mitochondrial dys-
function, particularly through mutations like G206D that 
disrupt organellar integrity [46]. This observation aligns 
with emerging evidence that PSEN1 mutations exert 
pathogenic effects beyond amyloidogenesis, including 
calcium dysregulation and impaired protein trafficking 
[47]. Our network data suggest these secondary mecha-
nisms may synergize with APOE ε4-associated path-
ways to accelerate neurodegeneration, potentially ex-
plaining phenotypic variability among mutation carriers. 
While gamma-secretase modulation remains a theoreti-
cally promising therapeutic target, our analysis under-
scores the biological complexity revealed by PSEN1’s 
multiple functional roles [48]. The network position of 
PSEN1 suggests that effective therapeutic strategies may 
require mutation-specific approaches accounting for dif-
ferential effects on secretase processivity, and combina-
torial therapies addressing both amyloid-dependent and 
amyloid-independent pathways. This dual requirement 
may explain the limited clinical success of pan-gamma-
secretase inhibitors and supports the development of 
more targeted molecular interventions.

APOE [apolipoprotein E) 

APOE is a key protein in AD pathogenesis, with its 
three isoforms: ε2, ε3, and ε4. The ε4 allele is the stron-
gest genetic risk factor for late-onset AD. Understanding 
APOE’s function, particularly its interactions with Aβ 
and impact on neurological processes, is crucial for un-
raveling AD complexities. 

Bioinformatics has advanced understanding of APOE 
in AD. Gene expression analysis and high-throughput 
sequencing have identified pathways related to lipid me-
tabolism, inflammation, and synaptic function altered in 
ε4 carriers [49]. Interaction networks constructed using 
bioinformatics tools show APOE’s involvement with 
lipid transport and inflammatory proteins, potentially 
exacerbating AD. Large-scale data analysis identifies 
additional biomarkers linked to APOE status and disease 
outcomes. 

Our results on APOE are consistent with other studies 
emphasizing its role as the strongest genetic risk factor 
for AD. The ε4 allele has been shown to increase AD risk 
and accelerate Aβ plaque formation, while the ε2 allele 
appears to have a protective effect. Research has demon-
strated that different APOE isoforms distinctly affect lip-
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id metabolism, inflammation, and synaptic function. Our 
findings on the differential effects of APOE isoforms on 
these pathways are supported by previous research [49]. 
Additionally, the interaction networks identified in our 
study align with findings from studies, like those by 
Tzioras et al., showing APOE’s involvement with lipid 
transport and inflammatory proteins, potentially exac-
erbating AD. Large-scale data analyses identifying ad-
ditional biomarkers linked to APOE status and disease 
outcomes further confirm our results [50]. 

PSEN2 in AD

Our network analysis confirmed the crucial role of pre-
senilin-2 (PSEN2) in AD pathogenesis through its func-
tion as the catalytic core of the γ-secretase complex. The 
findings demonstrated that PSEN2 contributes to amy-
loidogenic processing of APP similarly to PSEN1, but 
with distinct clinical and molecular implications. While 
both presenilins generate pathogenic Aβ42 peptides 
through APP cleavage, our data reveal important dif-
ferences in their network connectivity that may explain 
their divergent clinical associations [51].

The observed mutation profile of PSEN2 supports its 
role in both typical and atypical AD presentations. Spe-
cific mutations identified in our analysis (Gly56Ser, 
His169Asn) align with previous reports linking PSEN2 
variants to varied phenotypes, including EOAD, fronto-
temporal dementia, and dementia with Lewy bodies [52]. 
This phenotypic variability appears related to PSEN2’s 
more moderate effect on Aβ42 production compared to 
PSEN1 mutations, as evidenced by the generally later 
onset and slower progression in PSEN2-mediated cases 
[53]. Our network data further suggests these clinical 
differences may stem from PSEN2’s unique interactions 
with mitochondrial maintenance pathways, consistent 
with recent work demonstrating its role in cellular ener-
getics and oxidative stress responses [46].

Therapeutic targeting of PSEN2 presents both oppor-
tunities and challenges. While modulation of γ-secretase 
activity remains a potential intervention point, our net-
work analysis highlights several important consider-
ations. First, the milder amyloidogenic effect of PSEN2 
mutations suggests they may require different therapeu-
tic approaches than PSEN1-targeted strategies. Second, 
PSEN2’s involvement in multiple cleavage pathways 
(including Notch signaling) necessitates careful consid-
eration of off-target effects. Finally, the mitochondrial 
associations revealed in our study suggest that com-
binatorial approaches addressing both Aβ production 

and cellular energetics may be particularly relevant for 
PSEN2-mediated AD cases [54].

These findings collectively position PSEN2 as an 
important but distinct contributor to AD pathogenesis 
compared to its homolog PSEN1. The data support a 
model where PSEN2 mutations drive neurodegeneration 
through both amyloid-dependent and amyloid-indepen-
dent mechanisms, with the relative contribution of each 
pathway varying by specific mutation. This dual mecha-
nism may explain the broader phenotypic spectrum asso-
ciated with PSEN2 mutations and suggests the need for 
personalized therapeutic approaches based on individual 
mutation profiles.

BACE1 (beta-secretase 1) 

Beta-site APP cleaving enzyme 1 (BACE1) is essen-
tial in AD pathogenesis, primarily for its role in cleav-
ing APP to produce Aβ peptides that aggregate into 
plaques in AD patients’ brains [55]. As an aspartyl prote-
ase, BACE1 initiates amyloidogenic processing of APP, 
resulting in a soluble APP fragment and a membrane-
bound C99 fragment, which gamma-secretase further 
processes to produce Aβ peptides. The accumulation of 
toxic Aβ42 is a hallmark of AD pathology. 

Elevated BACE1 activity correlates with increased Aβ 
production, making it a key target for therapeutic inter-
vention [56]. 

Our investigation confirms BACE1’s critical role in the 
initial cleavage of APP and its significant involvement 
in AD. The challenges in developing BACE1 inhibitors, 
highlighted by our bioinformatics analysis, echo find-
ings from other studies, such as those by differ researcher 
[57-60]. Elevated BACE1 activity leads to increased Aβ 
levels, contributing to the formation of amyloid plaques, 
a hallmark of AD [59, 60]. Our study also highlights the 
challenges in developing BACE1 inhibitors due to safe-
ty and efficacy concerns, which align with reviews by 
Heneka et al. and other researchers [61, 62]. 

Furthermore, our results revealed critical interaction 
networks involving BACE1, emphasizing its regulatory 
role in amyloidogenic pathways and neuroinflammatory 
responses. These findings align with recent studies ex-
ploring multi-target drug candidates and multifunctional 
nanocarriers for delivering BACE1 inhibitors and other 
therapeutic agents, as discussed by contemporary re-
search. Specifically, this study identified challenges in 
clinical trials of BACE1 inhibitors and proposed inno-
vative approaches, such as multifunctional nanocarriers 
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and multi-target drug candidates, which aim to enhance 
therapeutic efficacy and address AD’s multifaceted na-
ture. 

BACE1 also modulates T cell activation and neuroin-
flammatory processes, complicating its role in AD pa-
thology. BACE1-deficient T cells show altered signaling 
and reduced pathogenicity, suggesting BACE1 influ-
ences immune responses in neurodegeneration. Studies 
indicate that BACE1 contributes to inflammatory signal-
ing in the central nervous system, which aligns with your 
findings on the regulatory role of BACE1 in neuroin-
flammatory responses [63]. 

Microglial and neuroinflammatory pathways in AD 
pathogenesis

Our network analysis revealed important insights into 
the secondary modulators of AD disease progression, 
with TREM2 emerging as the most centrally positioned 
neuroinflammatory component (ranking sixth overall). 
The significant connectivity of TREM2 within the AD 
network underscores its dual role in both amyloid clear-
ance and neuroinflammation regulation. As a microglial 
receptor, TREM2’s network position suggests it serves 
as a critical interface between amyloid pathology and the 
neuroinflammatory response, making it a particularly 
promising target for disease-modifying therapies aimed 
at enhancing plaque clearance while modulating microg-
lial activation states [64, 65].

The neurotrophic factor BDNF demonstrated some-
what weaker but still notable network connectivity (sev-
enth rank), consistent with its established role in synap-
tic maintenance rather than core disease initiation [55, 
66]. This positioning aligns with BDNF’s function as 
a downstream effector of neuronal health, where its re-
duction contributes to cognitive decline but likely repre-
sents a secondary consequence of primary pathological 
processes. Nevertheless, our findings support continued 
investigation of BDNF-boosting strategies as potential 
symptomatic or neuroprotective interventions.

Notch signaling pathways, represented by NCSRN 
(eighth rank), emerged as another important modulatory 
network in our analysis. The observed connectivity pat-
terns support recent work highlighting Notch signaling’s 
role in adult neuronal function and its dysregulation in 
neurodegeneration. Interestingly, NCSRN’s network 
position suggests it may mediate cross-talk between 
developmental pathways and degenerative processes, 
potentially explaining some of the developmental-like 
changes observed in AD brains [57, 58].

Our results confirm SORL1’s (nineth rank) involve-
ment in APP trafficking and amyloidogenic processing, 
though its relatively peripheral network position indi-
cates it may play a more specialized role in Aβ metabo-
lism compared to the core secretase components. This 
finding suggests that while SORL1 modulation could 
help normalize APP processing, its therapeutic effects 
might be most pronounced in combination with other 
targets [67, 68].

The pro-inflammatory cytokine TNF (10th rank) 
showed the weakest connectivity among the top network 
components, consistent with its role as a downstream ef-
fector of neuroinflammation. While TNF inhibition may 
provide symptomatic benefits by reducing inflammatory 
damage, its peripheral network position suggests it likely 
contributes to disease progression rather than initiation 
[69, 70].

Conclusion 

Our network analysis identified ten proteins with the 
highest recurrence and confirmation in AD, reinforcing 
their established roles in AD pathology. Among these, 
BACE1, APP, PSEN1, PSEN2, and APOE are pivotal 
in Aβ production and neuroinflammation. BACE1 fa-
cilitates the cleavage of APP, generating neurotoxic pep-
tides that contribute to plaque formation. The interaction 
between APP and gamma-secretase, particularly medi-
ated by PSEN1 and PSEN2, is central to the progres-
sion of AD, with mutations in these genes being strongly 
linked to EOAD. APOE, especially the ε4 allele, plays a 
critical role in Aβ clearance and neuroprotection, further 
influencing disease susceptibility and progression.

Comparing our findings with previous studies high-
lights both consistencies and novel contributions to AD 
research. Extensive literature supports the involvement 
of BACE1 and APP in amyloidogenic pathways, with 
prior studies emphasizing their therapeutic targeting 
potential in reducing Aβ levels. Our network-based ap-
proach further contextualizes their interactions within 
a broader molecular framework, adding complexity to 
traditional linear models of AD progression. Similarly, 
APOE has been widely studied in relation to Aβ clear-
ance and lipid metabolism, but our structural analysis of 
its interaction network provides additional insights into 
its regulatory role beyond Aβ deposition.

While existing biomedical publications have exten-
sively explored individual genetic contributors to AD, 
our integrative network analysis offers a systems-level 
perspective, mapping interactions between critical pro-
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teins to better understand the disease’s multifactorial 
nature. The advantage of this approach lies in its ability 
to highlight synergistic effects among different genetic 
players, providing a comprehensive view of how inter-
connected molecular pathways contribute to neurode-
generation. However, one limitation of network analysis 
is that correlation does not necessarily imply causation; 
while structural connectivity suggests functional inter-
play, experimental validation remains necessary to con-
firm direct mechanistic relationships.

By synthesizing information from bioinformatics da-
tabases and literature-based validation, our study aligns 
with recent trends in computational neuroscience, le-
veraging large-scale genomic data to identify promis-
ing biomarkers and therapeutic targets. Future research 
should focus on experimentally validating these findings 
through functional studies, enhancing translational ap-
plications in AD diagnosis and treatment. The integra-
tion of multi-omic approaches, including transcriptomic 
and proteomic analyses, will further refine our under-
standing of disease mechanisms, ultimately advancing 
precision medicine strategies for AD.
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