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ABSTRACT

Background: Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder characterized by
progressive cognitive decline. The apolipoprotein E (4POE) gene, particularly its €4 allele, is a well-
established genetic risk factor for late-onset AD. This study aimed to decipher APOE’s interaction
networks to advance AD diagnostics and therapeutics.

Materials and Methods: We conducted an analytical study comparing gene expression data and
genetic factors between AD patients and healthy controls. Candidate genes were identified through
comprehensive literature reviews and bioinformatics database searches, prioritizing genes validated
by in vivo, in vitro, or in silico evidence. Interaction networks were constructed using MATLAB
software, version R2025a and R software, version 4.5.1.

Results: Network analysis of AD-associated proteins—using centrality measures (maximum
neighborhood component (MNC), degree, betweenness, closeness, and radiality)—identified TREM2,
BDNEF, NCSRN, SORL1, and TNF as key components within the APOE network. TREM2 and TNF
regulate neuroinflammatory responses, BDNF supports neurotrophic activity and synaptic plasticity,
NCSRN modulates Notch signaling, and SORLI is critical for amyloid-beta (Af) metabolism. These
findings highlight AD’s multifactorial nature and reveal potential therapeutic targets and biomarkers.

Conclusion: Our results align with prior research, reinforcing the roles of TREM2 (microglial
activity), BDNF (neuroprotection), NCSRN (signaling pathways), and SORL1 (AP regulation) in AD
pathogenesis. By mapping APOE’s interaction network, this study provides a foundation for future
therapeutic innovations.
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Introduction

Izheimer’s disease (AD) is a progressive

neurodegenerative disorder affecting mil-

lions worldwide, characterized by cogni-

tive decline, memory impairment, and

behavioral disturbances [1, 2]. With the
aging global population, AD has emerged as a critical
public health challenge, underscoring the urgent need to
elucidate its molecular mechanisms. Despite decades of
research, AD’s etiology remains complex and multifac-
torial, involving intricate interactions between genetic
predisposition, environmental factors, and pathological
processes [3].

AD is broadly classified into early-onset AD (EOAD)
and late-onset AD (LOAD) based on age of onset. EOAD
manifests before the age of 65 and is frequently linked
to autosomal dominant mutations in amyloid precursor
protein (APP), Presenilin-1 (PSEN1), and PSEN2 [4, 5].
These mutations disrupt amyloid-beta (A) metabolism,
promoting excessive plaque deposition and subsequent
neuronal dysfunction [6]. In contrast, LOAD accounts
for the majority of cases and typically occurs after the
age of 65, arising from complex interactions between
genetic susceptibility (e.g. the apolipoprotein E (APOE)
&4 allele) and environmental risk factors. Notably, the
APOE ¢4 allele represents the strongest genetic risk
factor for LOAD, driving pathogenesis through mecha-
nisms, including impaired AP clearance, exacerbated
neuroinflammation, and synaptic dysfunction [7, 8].

The pathobiology of AD is characterized by hallmark
molecular and cellular alterations, including extracellu-
lar AP plaque deposition, intraneuronal neurofibrillary
tangles composed of hyperphosphorylated tau protein,
progressive synaptic dysfunction, mitochondrial dys-
regulation, oxidative stress, and chronic neuroinflamma-
tion, all of which collectively contribute to neurodegen-
eration and cognitive decline [9, 10]. AP, a proteolytic
fragment derived from APP processing, progressively
accumulates as extracellular plaques that impair neuro-
nal signaling and initiate neurotoxic pathways. These
AP aggregates disrupt synaptic plasticity while concur-
rently activating microglia-mediated neuroinflammatory
responses, creating a vicious cycle that amplifies neuro-
degeneration [11-13]. The accumulation of AP plaques
demonstrates a robust correlation with key pathological
hallmarks of AD, including progressive neurodegenera-
tion, synaptic depletion, and measurable cognitive de-
cline. These consistent pathological associations have
established dysregulated AP metabolism as a pivotal re-
search focus in AD therapeutics and biomarker develop-
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ment [14]. Tau pathology represents a critical component
of AD progression, characterized by the accumulation of
hyperphosphorylated tau proteins that aggregate into
intracellular neurofibrillary tangles. These pathological
inclusions disrupt microtubule stability, impair axonal
transport mechanisms, and ultimately drive progres-
sive neuronal degeneration and synaptic failure [15, 16].
Under physiological conditions, tau protein maintains
microtubule stability and facilitates axonal transport. In
AD, however, pathological hyperphosphorylation of tau
disrupts its normal function, leading to: (1) decreased
microtubule-binding affinity, (2) dissociation from mi-
crotubules, and 3) subsequent accumulation of insoluble
aggregates within neurons [17]. This pathological cas-
cade severely compromises axonal integrity, ultimately
leading to synaptic dysfunction and progressive neuro-
degeneration. Concurrently, chronic neuroinflamma-
tion - mediated by persistently activated microglia and
reactive astrocytes - constitutes a central driver of AD
pathogenesis. This self-sustaining inflammatory state,
perpetuated by pro-inflammatory cytokine cascades and
oxidative stress mechanisms, not only exacerbates neu-
ronal loss but also synergistically enhances AP toxicity,
creating a vicious cycle of disease progression [18, 19].
In AD, microglia - the brain’s resident immune cells - un-
dergo pathological overactivation, triggering excessive
release of pro-inflammatory cytokines, including tumor
necrosis factor-o (TNF-a), interleukin-13 (IL-1f), and
IL-6. This chronic neuroinflammatory response contrib-
utes to synaptic dysfunction, promotes neuronal apop-
tosis, and exacerbates AP toxicity, thereby accelerating
disease progression [20]. Although neuroinflammation
initially serves a neuroprotective function by promot-
ing debris clearance and tissue repair, chronic microglial
activation induces a maladaptive cascade characterized
by (a) excessive reactive oxygen species production, (b)
progressive synaptic impairment, and (c) activation of
apoptotic pathways - collectively exacerbating neurode-
generative processes in AD [21]. APOE &4 genotype is
associated with amplified neuroinflammatory responses,
including elevated pro-inflammatory cytokine produc-
tion and exaggerated microglial activation, demonstrat-
ing a clear genetic predisposition for immune dysregu-
lation in AD pathogenesis [22, 23]. The APOE gene,
located on chromosome 19, encodes apolipoprotein E,
a critical lipid transport protein involved in cholesterol
homeostasis and neuronal repair [24]. APOE exists in
three major allelic forms: €2, €3, and €4, each exerting
distinct effects on AD risk. The &4 allele is the strongest
genetic risk factor for LOAD, promoting AP aggrega-
tion, impairing clearance mechanisms, and intensifying
neuroinflammatory responses [25]. APOE influences
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disease pathology through multiple mechanisms, includ-
ing AP clearance, lipid transport, and synaptic repair, and
inflammatory regulation. APOE &4 impairs AP clear-
ance, resulting in excessive plaque deposition and neu-
ronal toxicity [26, 27]. Additionally, APOE plays a role
in brain lipid metabolism, affecting synaptic plasticity
and neuroprotection [28]. Finally, APOE &4 is associated
with increased neuroinflammation, exacerbating disease
progression [29].

Given its critical involvement in AD, deciphering
APOE interaction networks is essential for understand-
ing disease pathogenesis and identifying potential
therapeutic targets. Network-based approaches allow
researchers to map gene interactions and pinpoint key
regulatory nodes, providing insights into pathways that
may be leveraged for intervention [30]. Recent advances
in bioinformatics, high-throughput genomic analysis,
and computational network modeling have revolution-
ized our ability to identify APOE-associated pathways
in AD pathogenesis. The integration of multi-omics data
(including transcriptomic and proteomic datasets) has
enabled systematic mapping of molecular interactions,
revealing novel therapeutic targets and biomarkers.

This study employed an integrative computational
approach to: (a) construct a comprehensive APOE in-
teraction network, (b) identify critical regulatory hubs
through network centrality analysis, and (c) characterize
their functional roles in AD progression. By elucidat-
ing these complex gene-protein relationships, our find-
ings provide mechanistic insights into APOE-mediated
pathology, potential diagnostic biomarkers with clinical
translation potential, and novel targets for therapeu-
tic intervention. These results significantly advance
the framework for precision medicine in AD, offering
data-driven strategies for developing targeted therapies
against this complex neurodegenerative disorder.

Materials and Methods
Study population and sampling

This analytical study was conducted on gene expres-
sion data derived from AD patients and a control group
of healthy individuals. The datasets utilized in this re-
search were obtained from established bioinformatics
repositories, ensuring the inclusion of validated genetic
profiles for comparative analysis.

Res Mol Med, 2024; 12(3):75-92
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Data collection and network construction

Gene expression data relevant to AD were systemati-
cally retrieved from well-recognized bioinformatics da-
tabases, including NCBI, SWISS-Prot, and Diseasome.
These repositories provided access to curated gene ex-
pression datasets from both AD patients and healthy
individuals, serving as the gold standard for identifying
disease-associated genetic patterns. The collected data
formed the basis for constructing an interaction network,
enabling the exploration of gene-to-gene relationships
within AD pathology.

Gene selection and expression data extraction

Candidate genes implicated in AD were identified
through a multi-tiered approach that combined literature
reviews and bioinformatics database searches. Genes
were included in the study if they had been validated
through at least one of the in vivo, in vitro, or in silico
methodologies. Gene expression data were subsequent-
ly extracted from bioinformatics repositories using es-
tablished identifiers, such as Entrez Gene and UniProt,
ensuring consistency in data representation across dif-
ferent platforms.

Text mining approach and gene name normaliza-
tion

A comprehensive text mining strategy was employed
to extract, standardize, and normalize gene names from
published literature and biomedical databases. Due to the
variability in gene nomenclature, stringent procedures
were implemented to ensure accuracy in gene identifica-
tion and prevent ambiguity.

Automated text parsing and entity recognition: Bio-
medical literature was processed using natural language
processing (NLP) techniques to extract gene-related
terms. Named entity recognition (NER) algorithms were
applied to identify gene names within unstructured text,
filtering out non-biological entities that could confound
results.

Standardization of gene nomenclature: Given that gene
names often have multiple synonyms across different
sources, normalization was performed using authorita-
tive databases, such as the HUGO Gene Nomenclature
Committee (HGNC), Entrez Gene, and UniProt. Cross-
referencing these databases ensured that each gene was
assigned a standardized identifier, resolving discrepan-
cies due to alternative naming conventions.

—
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Contextual disambiguation of gene names: Some gene
names overlap with generic terms (e.g. “4APP” referring
to both APP and general application-related terminol-
ogy). To address this challenge, gene mentions were an-
alyzed in the context of surrounding biomedical terms,
improving accuracy in identification and avoiding false
matches.

Cross-validation with multiple databases: Extracted
gene names were systematically matched across mul-
tiple bioinformatics repositories, including OMIM,
GeneCards, and STRING, to eliminate inconsistencies.
High-confidence matches were retained for further net-
work analysis.

Manual verification of critical genes: Although au-
tomated methods provided primary gene recognition,
manual curation was performed to validate key findings,
ensuring that false-positive identifications were mini-
mized.

Gene-disease association (GDA) scoring

Candidate genes were prioritized based on a structured
scoring model that integrated multiple sources of valida-
tion, as follows:

Expert-reviewed sources: A weight was assigned based
on the number of validated sources supporting each
GDA.

Model organism studies: Genes with evidence from
mouse or rat datasets (CTD, MGD, RGD) were assigned
additional weight.

Clinical databases: Validation from human-specific
genomic databases (HPO, CLINVAR, GWASCAT,
GWASDB) contributed to ranking scores.

Publication frequency: Genes with extensive support in
published literature were prioritized, ensuring relevance
in the study’s findings.

Network analysis and structural evaluation

Interaction networks for candidate genes were mapped
based on expression profiles using the Gephi platform.
Network edges were weighted according to gene ex-
pression levels, allowing for structural analysis us-
ing centrality measures, such as degree, betweenness,
closeness, and radiality. Comparative network model-
ing between AD patients and healthy individuals was
performed to identify key regulatory nodes within the
disease pathology.

Research in Molecular Medicine

Statistical and computational analysis

All statistical computations were conducted using
MATLAB software, version R2025a and R software,
version 4.5.1., integrating machine learning algorithms
designed for bioinformatics applications. Descrip-
tive and inferential statistical methods were applied to
quantify gene interactions, assess network stability, and
extract biomarkers relevant to AD pathology. These
analyses provided insights into the hierarchical structure
of gene interaction networks and their potential signifi-
cance as therapeutic targets (Figure 1).

These interactions were determined based on at least
one type of study: in vivo, in vitro, or in silico. The genes
were identified according to the GDA criteria as shown
in Table 1.

Each gene has a GDA score of 1, indicating a strong
association with the disease. This emphasizes the impor-
tance of these genes in the pathogenesis and progression
of AD.

Results
Identification of essential nodes

In the context of interaction networks, the term “hub”
refers to key nodes within the network that are deter-
mined based on one of the centrality measures. These
essential nodes play a crucial role in the network’s struc-
ture. In biological networks, the concept of identifying
hub nodes involves determining the influential compo-
nents within the network that can serve as key genes or
proteins (essential) and may be introduced as biomark-
ers. These biomarkers can aid in the diagnosis or treat-
ment of diseases.

Network centrality

Centrality measures quantify the importance of nodes
within a network. Below, we defined and applied multi-
ple centrality parameters to identify critical genes in AD.

Network structural parameters
Maximum neighborhood component (MNC)

Each node, such as node aa, has a number of neighbors
N(a) that are directly connected to it. The MNC score for
node aa was defined as the size of the largest component
connected to node aa.

Res Mol Med, 2024; 12(3):75-92
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Figure 1. In the constructed interaction network, each node represents a gene, and the edges between them indicate physical

or functional interactions.

Based on this parameter, the highest scores were attrib-
uted to the biomarkers mentioned in Table 2. The inter-
action network is illustrated in Figure 2.

In the constructed interaction network, each node rep-
resents a gene, and the edges between them indicate
physical or functional interactions. These interactions
are determined based on at least one type of study: In
vivo, in vitro, or in silico. The genes are identified ac-
cording to the MNC criteria, with higher scores indicat-
ing more significant roles as biomarkers. The ranking
and MNC scores of the genes are detailed in Table 2.

Degree centrality

Degree centrality counts the number of edges con-
nected to a node, reflecting its local influence. In our AD
network, high-degree genes (Table 3) represented highly
connected biomarkers, such as APP, APOE, and PSEN1,
suggesting their pivotal roles in disease pathways.

The interaction network for these top 10 components
with the highest degree scores is illustrated in Figure 3.

In the constructed interaction network, each node rep-
resents a gene, and the edges between them indicate
physical or functional interactions. These interactions are
determined based on at least one type of study: In vivo,

Res Mol Med, 2024; 12(3):75-92

in vitro, or in silico. The genes are identified according
to their degree scores, which represent the number of
connections (edges) each gene (node) has within the net-
work. Higher degree scores indicate genes that are more
central and possibly more influential within the network.
The ranking and degree scores of the genes are detailed
in Table 3, highlighting the most effective biomarkers for
AD. The interaction network illustrates the connections
between these top 10 genes, providing insights into their
roles and interactions in the disease’s pathology.

Eigenvector centrality

Unlike degree centrality, eigenvector centrality
weights a node’s connections based on the centrality of
its neighbors. A node is more central if linked to other
central nodes. This measure highlights genes embed-
ded within influential subnetworks (e.g. APOE and
TREM?), underscoring their systemic importance be-
yond direct connections.

Closeness centrality

Closeness measures how quickly a node can reach oth-
ers via shortest paths. Genes with high closeness (Table 4,
Figure 4), like BACE] and PSEN2, may act as communi-
cation hubs, facilitating efficient signaling in AD-related
processes. The interaction network is shown in Figure 4.

—
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Figure 2. The interaction network of AD genes based on MNC scores

Figure 3. The interaction network of AD genes based on degree scores

Res Mol Med, 2024; 12(3):75-92
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Table 1. The GDA scores for each gene in the AD protein interaction network

Gene Name

GDA Score

PSEN1

APP

APOE

ACHE

TREM2

DISC1

PSEN2

GRN

TNF

BDNF

In the constructed interaction network, each node rep-
resents a gene, and the edges between them indicate
physical or functional interactions. These interactions
are determined based on at least one type of study: In
vivo, in vitro, or in silico. The genes are identified ac-
cording to their closeness centrality scores, which mea-
sure the sum of the shortest path lengths from each gene
to all other genes in the network. Higher closeness cen-
trality scores indicate genes that are more central within
the network, suggesting their potential significance and
influence in the disease’s biological processes. The
ranking and closeness centrality scores of the genes are

Table 2. MNC scores for the interaction network of AD genes

detailed in Table 4, highlighting the most crucial bio-
markers for AD. The interaction network illustrates the
connections and centrality of these top 10 genes, pro-
viding insights into their roles and interactions in the
pathology of the disease.

Radiality

Radiality is a measure that identifies the node with the
shortest distance to other nodes in its neighboring set.
The highest scores based on this criterion were calcu-
lated for the following genes:

Biomarker Rank

APP 1
PSEN1 2
APOE 3
PSEN2 4
BACE1 5
TREM2 6
BDNF 7
NCSTN 8
SORL1 9
TNF 10

Res Mol Med, 2024; 12(3):75-92
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Table 3. Degree scores for the interaction network of AD genes
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Biomarker Rank
APP 1
PSEN1 2
APOE 3
PSEN2 4
BACE1 5
TREM2 6
BDNF 7
NCSRN 8
SORL1 9
TNF 10

The interaction network of AD genes based on the radi-
ality measure is illustrated in Figure 5.

In the constructed interaction network, each node rep-
resents a gene, and the edges between them indicate

physical or functional interactions. These interactions
are determined based on at least one type of study: In
vivo, in vitro, or in silico. The genes are identified ac-
cording to their radiality scores, which measure the
shortest distance from each gene to all other genes in its

Figure 4. The interaction network of AD genes based on closeness centrality scores

Res Mol Med, 2024; 12(3):75-92
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Figure 5. The interaction network of AD genes based on radiality score

neighboring set. Higher radiality scores indicate genes
that are centrally located within the network, suggesting
their potential significance and influence in the biologi-
cal processes of AD. The ranking and radiality scores of
the genes are detailed in Table 5, highlighting the most
critical biomarkers for AD. The interaction network il-
lustrates the connections and centrality of these top 10
genes, providing insights into their roles and interactions
in the pathology of the disease.

Betweenness centrality

Betweenness identifies nodes that bridge disparate net-
work regions (Table 6). High-betweenness genes (e.g.
TNF, BDNF) are potential bottlenecks; their disruption
could impair network integrity.

The interaction network of AD based on betweenness
centrality is illustrated in Figure 6:

Figure 6. The interaction network of AD genes based on betweenness centrality scores

Res Mol Med, 2024; 12(3):75-92
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Table 4. Closeness centrality scores for the interaction network of AD genes

Biomarker Rank

APP 1
PSEN1 2
APOE 3
PSEN2 4
BACE1 5
TREM2 6
BDNF 7
NCSTN 8
SORL1 9
TNF 10

In the constructed interaction network, each node rep-
resents a gene, and the edges between them indicate
physical or functional interactions. These interactions
are determined based on at least one type of study: in
vivo, in vitro, or in silico. The genes are identified ac-
cording to their betweenness centrality scores, which
measure the extent to which each gene lies on the short-
est paths between other genes in the network. Higher
betweenness centrality scores indicate genes that are
critical for the transfer of information within the net-
work. The ranking and betweenness centrality scores of
the genes are detailed in Table 6, highlighting the most

Table 5. Radiality scores for the interaction network of AD genes

important biomarkers for AD. The interaction network
illustrates the connections and centrality of these top 10
genes, providing insights into their roles and interactions
in the pathology of the disease.

Based on the results of the interaction network analy-
sis of candidate proteins in AD, calculated using five
indicators—MNC, degree, betweenness, closeness,
and radiality—the ten proteins APP, PSENI1, APOE,
PSEN2, BACE1, TREM2, BDNF, NCSTN, SORLI,
and TNF had the highest frequency and confirmation by
these five indicators.

Biomarker Rank

APP 1
PSEN1 2
APOE 3
PSEN2 4
BACE1 5
TREM2 6
BDNF 7
NCSTN 8
SORL1 9
TNF 10

Res Mol Med, 2024; 12(3):75-92
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Table 7. Commonly proposed key genes based on 5 bioinformatics indicators

Gene Full Name Chromosomal Location nghe§t As?ouated Mechanism Ref.

Expression Diseases
Amyloic- ordosswih | anticoaguants, nd
APP beta precursor 21g21.3 Amniocytes 8 N [31]
: cerebral hemor- nonsteroidal anti-
protein .
rhage inflammatory agents
PSEN1 Presenilin 1 14924.2 mononuclear bEP R [32]
cells paraparesis, brane structure and
apraxia maintenance
Apolipopro- R AD related to Immunosuppressive agents, kinase inhibi-

APOE tein E 19q13.32 Liver Apoe4d tors, mTOR inhibitors (33]
Autosomal

PSEN2 Presenilin 2 1942.13 Pancreas GRS e'a.rly- Potent oral active y secretase inhibitors [34]

onset familial
AD

Late-onset .

BACE1 Beta- 11g23.3 Pancreas central nervous Essential for mgmbrane structure and [35]

secretase 1 o maintenance
system syphilis
Key biomarkers in AD blood mononuclear cells, APOE in the liver) and are as-

Integrating centrality measures from network analy-
sis, we identified 10 high-confidence biomarkers (4PP,
PSENI1, APOE, PSEN2, BACEI1, TREM?2, BDNF, NC-
STN, SORLI, TNF), recurrently ranked across metrics.
Among these, APP and PSENI/PSEN2 (presenilins 1
and 2) are critically implicated in AP processing, while
APOE isoforms modulate disease risk, particularly the
ApoE4 variant. These genes exhibit distinct expression
patterns (e.g. APP in amniocytes, PSENI in peripheral

sociated with familial AD, hereditary amyloidosis, and
other neurodegenerative pathologies. Their mechanisms
range from y-secretase regulation (PSEN1/2) to mem-
brane maintenance (BACE!) and immunosuppressive
pathways (APOE), highlighting their dual roles as diag-
nostic markers and therapeutic targets. The consistency
of their prominence across network metrics underscores
their potential for advancing biomarker-driven interven-
tions, as further detailed in Table 7.

Table 6. Betweenness centrality scores for the interaction network of AD genes

Biomarker Rank
APP 1
APOE 2
PSEN1 3
PSEN2 4
SORL1 5
BACE1 6
BDNF 7
TREM2 8
TNF 9
NCSTN 10

Res Mol Med, 2024; 12(3):75-92
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Discussion

The present study identified APP, PSENI, APOE,
PSEN2, and BACE] as key genes in AD pathogenesis
through a comprehensive network analysis using cen-
trality measures (MNC, degree, betweenness, closeness,
and radiality). These findings align with established
literature, reinforcing their critical roles in AD mecha-
nisms.

APP, a central player in AD, undergoes proteolytic
cleavage by BACE1 and y-secretase to generate A} pep-
tides, consistent with the amyloid cascade hypothesis
[36]. Our results corroborate prior studies demonstrating
that APP mutations (e.g. V'715M) increase AB42 produc-
tion, accelerating plaque formation and neurodegenera-
tion [37]. Notably, the interaction between APP and cell
adhesion molecules, as observed in our network, further
supports findings by Pfundstein et al., which suggest that
extracellular matrix proteins modulate APP processing
and AP aggregation [38].

Similarly, BACE 1 emerged as a high-impact gene in our
analysis, mirroring its well-documented role in initiating
amyloidogenic cleavage of APP [39]. Pharmacological
inhibition of BACEI has been explored as a therapeutic
strategy, though clinical trials have faced challenges due
to off-target effects [40]. Our data reinforce the impor-
tance of targeting BACE [ while highlighting the need for
precision in drug development to preserve physiological
APP functions.

The inclusion of APOE in our top-ranked genes further
validates its established association with LOAD risk,
particularly the &4 allele [41]. Prior studies have linked
APOEe4 to impaired AP clearance and neuroinflam-
mation, which our network analysis indirectly supports
through its interactions with inflammatory mediators,
like TREM?2 and TNF [42].

PSENT1 (presenilin 1)

The centrality analysis in our study identified PSEN]
as a critical node in AD pathogenesis, confirming its
well-established role in familial AD through gamma-
secretase-mediated amyloidogenic processing. Our find-
ings corroborate extensive literature demonstrating that
PSENI mutations (n=300+) predominantly increase the
AB42:ABA4O0 ratio [42], consistent with the amyloid cas-
cade hypothesis of AD pathogenesis [43, 44]. Notably,
the pleiotropic effects of PSENI mutations observed in
our network analysis mirror the diverse clinical pheno-
types reported in mutation carriers, ranging from typical
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EOAD to frontotemporal dementia and Lewy body de-
mentia variants [45].

The current results extend previous reports by high-
lighting PSENI’s involvement in mitochondrial dys-
function, particularly through mutations like G206D that
disrupt organellar integrity [46]. This observation aligns
with emerging evidence that PSEN]/ mutations exert
pathogenic effects beyond amyloidogenesis, including
calcium dysregulation and impaired protein trafficking
[47]. Our network data suggest these secondary mecha-
nisms may synergize with APOE e4-associated path-
ways to accelerate neurodegeneration, potentially ex-
plaining phenotypic variability among mutation carriers.
While gamma-secretase modulation remains a theoreti-
cally promising therapeutic target, our analysis under-
scores the biological complexity revealed by PSENI’s
multiple functional roles [48]. The network position of
PSENI suggests that effective therapeutic strategies may
require mutation-specific approaches accounting for dif-
ferential effects on secretase processivity, and combina-
torial therapies addressing both amyloid-dependent and
amyloid-independent pathways. This dual requirement
may explain the limited clinical success of pan-gamma-
secretase inhibitors and supports the development of
more targeted molecular interventions.

APOE [apolipoprotein E)

APOE is a key protein in AD pathogenesis, with its
three isoforms: €2, €3, and €4. The &4 allele is the stron-
gest genetic risk factor for late-onset AD. Understanding
APOE’s function, particularly its interactions with AP
and impact on neurological processes, is crucial for un-
raveling AD complexities.

Bioinformatics has advanced understanding of APOE
in AD. Gene expression analysis and high-throughput
sequencing have identified pathways related to lipid me-
tabolism, inflammation, and synaptic function altered in
&4 carriers [49]. Interaction networks constructed using
bioinformatics tools show APOE’s involvement with
lipid transport and inflammatory proteins, potentially
exacerbating AD. Large-scale data analysis identifies
additional biomarkers linked to APOE status and disease
outcomes.

Our results on APOE are consistent with other studies
emphasizing its role as the strongest genetic risk factor
for AD. The &4 allele has been shown to increase AD risk
and accelerate AP plaque formation, while the €2 allele
appears to have a protective effect. Research has demon-
strated that different APOE isoforms distinctly affect lip-
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id metabolism, inflammation, and synaptic function. Our
findings on the differential effects of APOE isoforms on
these pathways are supported by previous research [49].
Additionally, the interaction networks identified in our
study align with findings from studies, like those by
Tzioras et al., showing APOE’s involvement with lipid
transport and inflammatory proteins, potentially exac-
erbating AD. Large-scale data analyses identifying ad-
ditional biomarkers linked to APOE status and disease
outcomes further confirm our results [50].

PSEN2in AD

Our network analysis confirmed the crucial role of pre-
senilin-2 (PSEN2) in AD pathogenesis through its func-
tion as the catalytic core of the y-secretase complex. The
findings demonstrated that PSEN2 contributes to amy-
loidogenic processing of APP similarly to PSENI, but
with distinct clinical and molecular implications. While
both presenilins generate pathogenic AP42 peptides
through APP cleavage, our data reveal important dif-
ferences in their network connectivity that may explain
their divergent clinical associations [51].

The observed mutation profile of PSEN2 supports its
role in both typical and atypical AD presentations. Spe-
cific mutations identified in our analysis (Gly56Ser,
His169A4sn) align with previous reports linking PSEN2
variants to varied phenotypes, including EOAD, fronto-
temporal dementia, and dementia with Lewy bodies [52].
This phenotypic variability appears related to PSEN2’s
more moderate effect on AB42 production compared to
PSENI mutations, as evidenced by the generally later
onset and slower progression in PSEN2-mediated cases
[53]. Our network data further suggests these clinical
differences may stem from PSEN2’s unique interactions
with mitochondrial maintenance pathways, consistent
with recent work demonstrating its role in cellular ener-
getics and oxidative stress responses [46].

Therapeutic targeting of PSEN2 presents both oppor-
tunities and challenges. While modulation of y-secretase
activity remains a potential intervention point, our net-
work analysis highlights several important consider-
ations. First, the milder amyloidogenic effect of PSEN2
mutations suggests they may require different therapeu-
tic approaches than PSEN/-targeted strategies. Second,
PSEN2’s involvement in multiple cleavage pathways
(including Notch signaling) necessitates careful consid-
eration of off-target effects. Finally, the mitochondrial
associations revealed in our study suggest that com-
binatorial approaches addressing both AB production
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and cellular energetics may be particularly relevant for
PSEN2-mediated AD cases [54].

These findings collectively position PSEN2 as an
important but distinct contributor to AD pathogenesis
compared to its homolog PSENI. The data support a
model where PSEN2 mutations drive neurodegeneration
through both amyloid-dependent and amyloid-indepen-
dent mechanisms, with the relative contribution of each
pathway varying by specific mutation. This dual mecha-
nism may explain the broader phenotypic spectrum asso-
ciated with PSEN2 mutations and suggests the need for
personalized therapeutic approaches based on individual
mutation profiles.

BACE] (beta-secretase 1)

Beta-site APP cleaving enzyme 1 (BACE]) is essen-
tial in AD pathogenesis, primarily for its role in cleav-
ing APP to produce AP peptides that aggregate into
plaques in AD patients’ brains [55]. As an aspartyl prote-
ase, BACE] initiates amyloidogenic processing of APP,
resulting in a soluble APP fragment and a membrane-
bound C99 fragment, which gamma-secretase further
processes to produce AP peptides. The accumulation of
toxic AB42 is a hallmark of AD pathology.

Elevated BACE] activity correlates with increased AP
production, making it a key target for therapeutic inter-
vention [56].

Our investigation confirms BACE1’s critical role in the
initial cleavage of APP and its significant involvement
in AD. The challenges in developing BACE! inhibitors,
highlighted by our bioinformatics analysis, echo find-
ings from other studies, such as those by differ researcher
[57-60]. Elevated BACE1 activity leads to increased AP
levels, contributing to the formation of amyloid plaques,
a hallmark of AD [59, 60]. Our study also highlights the
challenges in developing BACE1 inhibitors due to safe-
ty and efficacy concerns, which align with reviews by
Heneka et al. and other researchers [61, 62].

Furthermore, our results revealed critical interaction
networks involving BACE, emphasizing its regulatory
role in amyloidogenic pathways and neuroinflammatory
responses. These findings align with recent studies ex-
ploring multi-target drug candidates and multifunctional
nanocarriers for delivering BACE] inhibitors and other
therapeutic agents, as discussed by contemporary re-
search. Specifically, this study identified challenges in
clinical trials of BACE! inhibitors and proposed inno-
vative approaches, such as multifunctional nanocarriers
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and multi-target drug candidates, which aim to enhance
therapeutic efficacy and address AD’s multifaceted na-
ture.

BACE] also modulates T cell activation and neuroin-
flammatory processes, complicating its role in AD pa-
thology. BACE1-deficient T cells show altered signaling
and reduced pathogenicity, suggesting BACE1 influ-
ences immune responses in neurodegeneration. Studies
indicate that BACE]1 contributes to inflammatory signal-
ing in the central nervous system, which aligns with your
findings on the regulatory role of BACE1 in neuroin-
flammatory responses [63].

Microglial and neuroinflammatory pathways in AD
pathogenesis

Our network analysis revealed important insights into
the secondary modulators of AD disease progression,
with TREM2 emerging as the most centrally positioned
neuroinflammatory component (ranking sixth overall).
The significant connectivity of TREM2 within the AD
network underscores its dual role in both amyloid clear-
ance and neuroinflammation regulation. As a microglial
receptor, TREM2’s network position suggests it serves
as a critical interface between amyloid pathology and the
neuroinflammatory response, making it a particularly
promising target for disease-modifying therapies aimed
at enhancing plaque clearance while modulating microg-
lial activation states [64, 65].

The neurotrophic factor BDNF demonstrated some-
what weaker but still notable network connectivity (sev-
enth rank), consistent with its established role in synap-
tic maintenance rather than core disease initiation [55,
66]. This positioning aligns with BDNF’s function as
a downstream effector of neuronal health, where its re-
duction contributes to cognitive decline but likely repre-
sents a secondary consequence of primary pathological
processes. Nevertheless, our findings support continued
investigation of BDNF-boosting strategies as potential
symptomatic or neuroprotective interventions.

Notch signaling pathways, represented by NCSRN
(eighth rank), emerged as another important modulatory
network in our analysis. The observed connectivity pat-
terns support recent work highlighting Notch signaling’s
role in adult neuronal function and its dysregulation in
neurodegeneration. Interestingly, NCSRN’s network
position suggests it may mediate cross-talk between
developmental pathways and degenerative processes,
potentially explaining some of the developmental-like
changes observed in AD brains [57, 58].
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Our results confirm SORL1’s (nineth rank) involve-
ment in APP trafficking and amyloidogenic processing,
though its relatively peripheral network position indi-
cates it may play a more specialized role in AR metabo-
lism compared to the core secretase components. This
finding suggests that while SORL1 modulation could
help normalize APP processing, its therapeutic effects
might be most pronounced in combination with other
targets [67, 68].

The pro-inflammatory cytokine TNF (10" rank)
showed the weakest connectivity among the top network
components, consistent with its role as a downstream ef-
fector of neuroinflammation. While TNF inhibition may
provide symptomatic benefits by reducing inflammatory
damage, its peripheral network position suggests it likely
contributes to disease progression rather than initiation
[69, 70].

Conclusion

Our network analysis identified ten proteins with the
highest recurrence and confirmation in AD, reinforcing
their established roles in AD pathology. Among these,
BACEI1, APP, PSEN1, PSEN2, and APOE are pivotal
in AP production and neuroinflammation. BACE1 fa-
cilitates the cleavage of APP, generating neurotoxic pep-
tides that contribute to plaque formation. The interaction
between APP and gamma-secretase, particularly medi-
ated by PSENI1 and PSEN2, is central to the progres-
sion of AD, with mutations in these genes being strongly
linked to EOAD. APOE, especially the €4 allele, plays a
critical role in AP clearance and neuroprotection, further
influencing disease susceptibility and progression.

Comparing our findings with previous studies high-
lights both consistencies and novel contributions to AD
research. Extensive literature supports the involvement
of BACEI and APP in amyloidogenic pathways, with
prior studies emphasizing their therapeutic targeting
potential in reducing AP levels. Our network-based ap-
proach further contextualizes their interactions within
a broader molecular framework, adding complexity to
traditional linear models of AD progression. Similarly,
APOE has been widely studied in relation to Af clear-
ance and lipid metabolism, but our structural analysis of
its interaction network provides additional insights into
its regulatory role beyond AP deposition.

While existing biomedical publications have exten-
sively explored individual genetic contributors to AD,
our integrative network analysis offers a systems-level
perspective, mapping interactions between critical pro-
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teins to better understand the disease’s multifactorial
nature. The advantage of this approach lies in its ability
to highlight synergistic effects among different genetic
players, providing a comprehensive view of how inter-
connected molecular pathways contribute to neurode-
generation. However, one limitation of network analysis
is that correlation does not necessarily imply causation;
while structural connectivity suggests functional inter-
play, experimental validation remains necessary to con-
firm direct mechanistic relationships.

By synthesizing information from bioinformatics da-
tabases and literature-based validation, our study aligns
with recent trends in computational neuroscience, le-
veraging large-scale genomic data to identify promis-
ing biomarkers and therapeutic targets. Future research
should focus on experimentally validating these findings
through functional studies, enhancing translational ap-
plications in AD diagnosis and treatment. The integra-
tion of multi-omic approaches, including transcriptomic
and proteomic analyses, will further refine our under-
standing of disease mechanisms, ultimately advancing
precision medicine strategies for AD.

Ethical Considerations
Compliance with ethical guidelines

Informed consent was obtained from all participants
included in the study.

Funding

This research did not receive any grant from funding
agencies in the public, commercial, or non-profit sectors.

Authors contribution's

Supervision and methodology: Fatemeh Bossaghza-
deh; Investigation, data collection, analysis, and funding
administration: Mahshid Khorammi; Writing: Morteza
Golbashirzadeh.

Conflict of interest

The authors declared no conflict of interest.

Res Mol Med, 2024; 12(3):75-92

Research in Molecular Medicine

References

[1] Saragea PD. Alzheimer's disease (AD): Environmental
modifiable risk factors. Int ] Multidiscip Res. 2024; 6(4):1-12.
[DOI:10.36948/ijfmr.2024.v06i04.26759]

[2] Kirova AM, Bays RB, Lagalwar S. Working memory and ex-
ecutive function decline across normal aging, mild cognitive
impairment, and Alzheimer's disease. Biomed Res Int. 2015;
2015:748212. [DOI:10.1155/2015/748212] [PMID]

[3] Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M.
World Alzheimer Report 2015. The global impact of demen-
tia: An analysis of prevalence, incidence, cost and trends.
London: Alzheimer’s Disease Internation ; 2015. [Link]

[4] Zhao N, Liu CC, Qiao W, Bu G. Apolipoprotein E, receptors,
and modulation of alzheimer's disease. Biol Psychiatry. 2018;
83(4):347-57. [DOI:10.1016/j.biopsych.2017.03.003] [PMID]

[5] Kamondi A, Grigg-Damberger M, Loscher W, Tanila H,
Horvath AA. Epilepsy and epileptiform activity in late-onset
Alzheimer disease: Clinical and pathophysiological advanc-
es, gaps and conundrums. Nat Rev Neurol. 2024; 20(3):162-
82. [DOI:10.1038 / s41582-024-00932-4] [PMID]

[6] Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apoli-
poprotein E and Alzheimer disease: Pathobiology and
targeting strategies. Nat Rev Neurol. 2019; 15(9):501-18.
[DOI:10.1038 /s41582-019-0228-7] [PMID]

[7] Zhang XX, Tian Y, Wang ZT, Ma YH, Tan L, Yu JT. The
epidemiology of alzheimer's disease modifiable risk factors
and prevention. ] Prev Alzheimers Dis. 2021; 8(3):313-21.
[DOI:10.14283 /jpad.2021.15] [PMID]

[8] Milligan Armstrong A, Porter T, Quek H, White A, Haynes
J, Jackaman C, et al. Chronic stress and Alzheimer's disease:
theinterplay between the hypothalamic-pituitary-adrenal
axis, genetics and microglia. Biol Rev Camb Philos Soc. 2021;
96(5):2209-28. [DOI:10.1111/brv.12750] [PMID]

[9] Sims R, Hill M, Williams J. The multiplex model of the genet-
ics of Alzheimer's disease. Nat Neurosci. 2020; 23(3):311-22.
[DOI:10.1038 /s41593-020-0599-5] [PMID]

[10] Zhao P, El1 Fadel O, Le A, Mangleburg CG, DhindsaJ, Wu T,
et al. Systems genetic dissection of Alzheimer’s disease brain
gene expression networks. bioRxiv. 2024:2024.10. 04.616661
[Unpublished]. [DOI:10.1101/2024.10.04.616661]

[11] Lam S, Bayraktar A, Zhang C, Turkez H, Nielsen J, Boren
J, et al. A systems biology approach for studying neurode-
generative diseases. Drug Discov Today. 2020; 25(7):1146-59.
[DOI:10.1016/j.drudis.2020.05.010] [PMID]

[12] He S, Dou L, Li X, Zhang Y. Review of bioinformatics in
Azheimer's Disease Research. Comput Biol Med. 2022;
143:105269. [DOI:10.1016/j.compbiomed.2022.105269]
[PMID]

[13] Zhang Y, Gao H, Zheng W, Xu H. Current understanding
of the interactions between metal ions and Apolipoprotein
E in Alzheimer's disease. Neurobiol Dis. 2022; 172:105824.
[DOI:10.1016/j.nbd.2022.105824] [PMID]

[14] CummingsJ, Lee G, Zhong K, Fonseca ], Taghva K. Alzhei-
mer's disease drug development pipeline: 2021. Alzheimers
Dement (N Y). 2021; 7(1):12179. [DOI:10.1002/ trc2.12179]
[PMID]



http://rmm.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en
https://doi.org/10.36948/ijfmr.2024.v06i04.26759
https://doi.org/10.1155/2015/748212
https://www.ncbi.nlm.nih.gov/pubmed/26550575
https://unilim.hal.science/hal-03495438/document
https://doi.org/10.1016/j.biopsych.2017.03.003
https://www.ncbi.nlm.nih.gov/pubmed/28434655
https://doi.org/10.1038/s41582-024-00932-4
https://www.ncbi.nlm.nih.gov/pubmed/38356056
https://doi.org/10.1038/s41582-019-0228-7
https://www.ncbi.nlm.nih.gov/pubmed/31367008
https://doi.org/10.14283/jpad.2021.15
https://www.ncbi.nlm.nih.gov/pubmed/34101789
https://doi.org/10.1111/brv.12750
https://www.ncbi.nlm.nih.gov/pubmed/34159699
https://doi.org/10.1038/s41593-020-0599-5
https://www.ncbi.nlm.nih.gov/pubmed/32112059
https://doi.org/10.1101/2024.10.04.616661
https://doi.org/10.1016/j.drudis.2020.05.010
https://www.ncbi.nlm.nih.gov/pubmed/32442631
https://doi.org/10.1016/j.compbiomed.2022.105269
https://www.ncbi.nlm.nih.gov/pubmed/35158118
https://doi.org/10.1016/j.nbd.2022.105824
https://www.ncbi.nlm.nih.gov/pubmed/35878744
https://doi.org/10.1002/trc2.12179
https://www.ncbi.nlm.nih.gov/pubmed/34095440

Khorrami M, et al

[15] Sharma S, Guleria K, Tiwari S, Kumar S. A deep learning
based convolutional neural network model with VGG16 fea-
ture extractor for the detection of Alzheimer Disease using
MRI scans. Measurement. 2022; 24:100506. [DOI:10.1016/j.
measen.2022.100506]

[16] Dara OA, Lopez-Guede JM, Raheem HI, Rahebi J, Zulueta
E, Fernandez-Gamiz U. Alzheimer’s disease diagnosis us-
ing machine learning: A survey. Appl Sci. 2023; 13(14):8298.
[DOI:10.3390/ app13148298]

[17] English M, Kumar C, Ditterline BL, Drazin D, Dietz N.
Machine learning in neuro-oncology, epilepsy, alzheimer's
disease, and schizophrenia. Acta Neurochir Suppl. 2022;
134:349-61. [DOI:10.1007 /978-3-030-85292-4_39] [PMID]

[18] Khalil YA, Rabes JP, Boileau C, Varret M. APOE gene vari-
ants in primary dyslipidemia. Atherosclerosis. 2021; 328:11-
22. [DOI:10.1016/j.atherosclerosis.2021.05.007] [PMID]

[19] Momkute L, Vilkeviciute A, Gedvilaite G, Dubinskaite G,
Kriauciuniene L, Liutkeviciene R. Association of APOE Se-
rum levels and APOE €2, €3, and ¢4 alleles with optic neu-
ritis. Genes. 2022; 13(7):1188. [DOI:10.3390/ genes13071188]
[PMID]

[20] Ogonowski NS, Garcia-Marin LM, Fernando AS, Flores-
Ocampo V, Renteria ME. Impact of genetic predisposition to
late-onset neurodegenerative diseases on early life outcomes
and brain structure. Transl Psychiatry. 2024; 14(1):185.
[DOI:10.1038/ 541398-024-02898-9] [PMID]

[21] Poblano J, Castillo-Tobias I, Berlanga L, Tamayo-Ordofiez
MC, Del Carmen Rodriguez-Salazar M, Silva-Belmares SY,
et al. Drugs targeting APOE4 that regulate beta-amyloid ag-
gregation in the brain: Therapeutic potential for Alzheimer's
disease. Basic Clin Pharmacol Toxicol. 2024; 135(3):237-49.
[DOI:10.1111/bept. 14055] [PMID]

[22] Loch RA, Wang H, Peralvarez-Marin A, Berger P, Niels-
en H, Chroni A, et al. Cross interactions between Apoli-
poprotein E and amyloid proteins in neurodegenerative
diseases. Comput Struct Biotechnol J. 2023; 21:1189-204.
[DOI:10.1016/j.csbj.2023.01.022] [PMID]

[23] Husain MA, Laurent B, Plourde M. APOE and alzheimer's
disease: From lipid transport to physiopathology and thera-
peutics. Front Neurosci. 2021; 15:630502. [DOI:10.3389/
fnins.2021.630502] [PMID]

[24] Ferndndez-Calle R, Konings SC, Frontifian-Rubio J, Garcia-
Revilla J, Camprubi-Ferrer L, Svensson M, et al. APOE in
the bullseye of neurodegenerative diseases: impact of the
APOE genotype in Alzheimer's disease pathology and brain
diseases. Mol Neurodegener. 2022; 17(1):62. [DOI:10.1186/
$13024-022-00566-4] [PMID]

[25] Fernandez-Pérez 1, Macias-Gémez A, Suérez-Pérez A,
Vallverda-Prats M, Giralt-Steinhauer E, Bojtos L, et al. The
role of epigenetics in brain aneurysm and subarachnoid
hemorrhage: A comprehensive review. Int ] Mol Sci. 2024;
25(6):3433. [DOI:10.3390/ ijms25063433] [PMID]

[26] Priyamvada P, Debroy R, Anbarasu A, Ramaiah S. A
comprehensive review on genomics, systems biology and
structural biology approaches for combating antimicrobial
resistance in ESKAPE pathogens: Computational tools and
recent advancements. World ] Microbiol Biotechnol. 2022;
38(9):153. [DOI:10.1007/511274-022-03343-z] [PMID]

Research in Molecular Medicine

[27] Martinez-Martinez AB, Torres-Perez E, Devanney N, Del
Moral R, Johnson LA, Arbones-Mainar JM. Beyond the CNS:
The many peripheral roles of APOE. Neurobiol Dis. 2020;
138:104809. [DOI:10.1016/j.nbd.2020.104809] [PMID]

[28] Turk A, Kunej T, Peterlin B. MicroRNA-target interaction
regulatory network in alzheimer's disease. ] Pers Med. 2021;
11(12):1275. [DOI:10.3390/jpm11121275] [PMID]

[29] Rosenthal SB, Wang H, Shi D, Liu C, Abagyan R, McE-
voy LK, et al. Mapping the gene network landscape of
Alzheimer's disease through integrating genomics and
transcriptomics. PLoS Comput Biol. 2022; 18(2):e1009903.
[DOI:10.1371/journal.pcbi.1009903] [PMID]

[30] Sanabria-Diaz G, Melie-Garcia L, Draganski B, Demonet JF,
Kherif F. Apolipoprotein E4 effects on topological brain net-
work organization in mild cognitive impairment. Sci Rep.
2021; 11(1):845. [DOI:10.1038 / s41598-020-80909-7] [PMID]

[31] Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH,
et al. The amyloid-p pathway in alzheimer's disease. Mol
Psychiatry. 2021; 26(10):5481-503. [DOI:10.1038/s41380-021-
01249-0] [PMID]

[32] Bagaria J, Bagyinszky E, An SSA. Genetics, functions, and
clinical impact of presenilin-1 (PSEN1) Gene. Int ] Mol Sci.
2022; 23(18):10970. [DOL:10.3390/ ijms231810970] [PMID]

[33] Serrano-Pozo A, Das S, Hyman BT. APOE and alzhei-
mer's disease: Advances in genetics, pathophysiology, and
therapeutic approaches. Lancet Neurol. 2021; 20(1):68-80.
[DOI:10.1016,/S1474-4422(20)30412-9] [PMID]

[34] Hooli BV, Mohapatra G, Mattheisen M, Parrado AR, Roehr
JT, Shen Y, et al. Role of common and rare APP DNA se-
quence variants in Alzheimer disease. Neurology. 2012;
78(16):1250-7. [DOI:10.1212/WNL.0b013e3182515972]
[PMID]

[35] Ugar Akyiirek T, Orhan IE, Senol Deniz FS, Eren G, Acar
B, Sen A. Evaluation of selected plant phenolics via beta-
secretase-1 inhibition, molecular docking, and gene expres-
sion related to alzheimer's disease. Pharmaceuticals. 2024;
17(11):1441. [DOI:10.3390/ ph17111441] [PMID]

[36] Delport A, Hewer R. The amyloid precursor protein: A con-
verging point in Alzheimer's disease. Mol Neurobiol. 2022;
59(7):4501-16. [DOI:10.1007 /512035-022-02863-x] [PMID]

[37] Park HK, Na DL, Lee JH, Kim JW, Ki CS. Identification of
PSEN1 and APP gene mutations in Korean patients with
early-onset Alzheimer's disease. ] Korean Med Sci. 2008;
23(2):213-7. [DOI:10.3346/jkms.2008.23.2.213] [PMID]

[38] Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precur-
sor protein (APP) and amyloid B (AP) interact with cell ad-
hesion molecules: Implications in Alzheimer’s disease and
normal physiology. Front cell Dev Biol. 2022; 10:969547.
[DOI:10.3389/ fcell.2022.969547]

[39] Lichtenthaler SF, Tschirner SK, Steiner H. Secretases in Alz-
heimer's disease: Novel insights into proteolysis of APP and
TREM2. Curr Opin Neurobiol. 2022 Feb;72:101-110. [DOI:
10.1016/j.conb.2021.09.003] [PMID]

[40] Zhao J, Liu X, Xia W, Zhang Y, Wang C. Targeting amy-
loidogenic processing of APP in alzheimer's disease. Front
Mol Neurosci. 2020; 13:137. [DOI:10.3389/ fnmo1.2020.00137]
[PMID]

Res Mol Med, 2024; 12(3):75-92



http://rmm.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en
https://doi.org/10.1016/j.measen.2022.100506
https://doi.org/10.1016/j.measen.2022.100506
https://doi.org/10.3390/app13148298
https://doi.org/10.1007/978-3-030-85292-4_39
https://www.ncbi.nlm.nih.gov/pubmed/34862559
https://doi.org/10.1016/j.atherosclerosis.2021.05.007
https://www.ncbi.nlm.nih.gov/pubmed/34058468
https://doi.org/10.3390/genes13071188
https://www.ncbi.nlm.nih.gov/pubmed/35885971
https://doi.org/10.1038/s41398-024-02898-9
https://www.ncbi.nlm.nih.gov/pubmed/38605018
https://doi.org/10.1111/bcpt.14055
https://www.ncbi.nlm.nih.gov/pubmed/39020526
https://doi.org/10.1016/j.csbj.2023.01.022
https://www.ncbi.nlm.nih.gov/pubmed/36817952
https://doi.org/10.3389/fnins.2021.630502
https://doi.org/10.3389/fnins.2021.630502
https://www.ncbi.nlm.nih.gov/pubmed/33679311
https://doi.org/10.1186/s13024-022-00566-4
https://doi.org/10.1186/s13024-022-00566-4
https://www.ncbi.nlm.nih.gov/pubmed/36153580
https://doi.org/10.3390/ijms25063433
https://www.ncbi.nlm.nih.gov/pubmed/38542406
https://doi.org/10.1007/s11274-022-03343-z
https://www.ncbi.nlm.nih.gov/pubmed/35788443
https://doi.org/10.1016/j.nbd.2020.104809
https://www.ncbi.nlm.nih.gov/pubmed/32087284
https://doi.org/10.3390/jpm11121275
https://www.ncbi.nlm.nih.gov/pubmed/34945753
https://doi.org/10.1371/journal.pcbi.1009903
https://www.ncbi.nlm.nih.gov/pubmed/35213535
https://doi.org/10.1038/s41598-020-80909-7
https://www.ncbi.nlm.nih.gov/pubmed/33436948
https://doi.org/10.1038/s41380-021-01249-0
https://doi.org/10.1038/s41380-021-01249-0
https://www.ncbi.nlm.nih.gov/pubmed/34456336
https://doi.org/10.3390/ijms231810970
https://www.ncbi.nlm.nih.gov/pubmed/36142879
https://doi.org/10.1016/S1474-4422(20)30412-9
https://www.ncbi.nlm.nih.gov/pubmed/33340485
https://doi.org/10.1212/WNL.0b013e3182515972
https://www.ncbi.nlm.nih.gov/pubmed/22491860
https://doi.org/10.3390/ph17111441
https://www.ncbi.nlm.nih.gov/pubmed/39598353
https://doi.org/10.1007/s12035-022-02863-x
https://www.ncbi.nlm.nih.gov/pubmed/35579846
https://doi.org/10.3346/jkms.2008.23.2.213
https://www.ncbi.nlm.nih.gov/pubmed/18437002
https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2022.969547/full
https://doi.org/10.1016/j.conb.2021.09.003
https://doi.org/10.1016/j.conb.2021.09.003
https://pubmed.ncbi.nlm.nih.gov/34689040/
https://doi.org/10.3389/fnmol.2020.00137
https://www.ncbi.nlm.nih.gov/pubmed/32848600

APOE Gene Interaction Networks in Alzheimer’s Disease

[41] Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molec-
ular and cellular mechanisms underlying the pathogenesis
of Alzheimer's disease. Mol Neurodegener. 2020; 15(1):40.
[DOI:10.1186/513024-020-00391-7] [PMID]

[42] Yang Y, Bagyinszky E, An SSA. Presenilin-1 (PSEN1) mu-
tations: clinical phenotypes beyond alzheimer's disease.
Int ] Mol Sci. 2023; 24(9):8417. [DOI:10.3390/1jms24098417]
[PMID]

[43] Antonell A, Balasa M, Oliva R, Lladé A, Bosch B, Fabregat
N, et al. A novel PSEN1 gene mutation (L235R) associated
with familial early-onset Alzheimer's disease. Neurosci Lett.
2011; 496(1):40-2. [DOI:10.1016/j.neulet.2011.03.084] [PMID]

[44] Qiu Q, Shen L, Jia L, Wang Q, Li F, Li Y, et al. A Novel
PSEN1 M139L mutation found in a chinese pedigree with
early-onset alzheimer's disease increases Ap42/AB40 ratio.
J Alzheimers Dis. 2019; 69(1):199-212. [DOI:10.3233/JAD-
181291] [PMID]

[45] Tripathi A, Pandey VK, Sharma G, Sharma AR, Taufeeq
A, Jha AK, et al. Genomic insights into dementia: Preci-
sion medicine and the impact of gene-environment in-
teraction. Aging Dis. 2024; 15(5):2113-35. [DOI:10.14336/
AD.2024.0322] [PMID]

[46] Costa-Laparra I, Jusrez-Escoto E, Vicario C, Moratalla R,
Garcia-Sanz P. APOE ¢4 allele, along with G206D-PSEN1
mutation, alters mitochondrial networks and their degra-
dation in Alzheimer's disease. Front Aging Neurosci. 2023;
15:1087072. [DOI:10.3389/ fnagi.2023.1087072] [PMID]

[47] Kelleher R] 3rd, Shen J. Presenilin-1 mutations and Alzhei-
mer's disease. Proc Natl Acad Sci USA. 2017; 114(4):629-31.
[DOI:10.1073/ pnas.1619574114] [PMID]

[48] Ghani M, Reitz C, George-Hyslop PS, Rogaeva E. Genetic
complexity of early-onset Alzheimer’s disease. In: Galim-
berti D, Scarpini E, editors. Neurodegenerative diseases:
Clinical aspects, molecular genetics and biomarkers. Cham:
Springer International Publishing; 2018. [DOI:10.1007/978-
3-319-72938-1_3]

[49] Raulin AC, Doss SV, Trottier ZA, Tkezu TC, Bu G, Liu
CC. ApoE in Alzheimer’s disease: Pathophysiology and
therapeutic strategies. Mol Neurodegener. 2022; 17(1):72.
[DOI:10.1186/s13024-022-00574-4]

[50] Tzioras M, McGeachan R, Durrant CS, Spires-Jones TL.
Synaptic degeneration in Alzheimer disease. Nat Rev Neu-
rol. 2023; 19(1):19-38. [DOI:10.1038/s41582-022-00749-z]
[PMID]

[51] Pizzo P, Basso E, Filadi R, Greotti E, Leparulo A, Pendin
D, et al. Presenilin-2 and calcium handling: Molecules, or-
ganelles, cells and brain networks. Cells. 2020; 9(10):2166.
[DOI:10.3390/ cells9102166] [PMID]

[52] Bae H, Shim KH, Yoo J, Yang YS, An SSA, Kang MJ. Dou-
ble mutations in a patient with early-onset alzheimer's dis-
ease in Korea: An APP Val551Met and a PSEN2 His169Asn.
Int J Mol Sci. 2023; 24(8):7446. [DOI:10.3390/ijms24087446]
[PMID]

[53] Shim KH, Kang MJ, Bae H, Kim D, Park ], An SA, et al. A
possible pathogenic PSEN2 Gly56Ser mutation in a Korean
patient with early-onset alzheimer's disease. Int ] Mol Sci.
2022; 23(6):2967. [DOI:10.3390/ ijms23062967] [PMID]

Res Mol Med, 2024; 12(3):75-92

Research in Molecular Medicine

[54] Soto-Ospina A, Araque Marin P, Bedoya G, Sepulveda-
Falla D, Villegas Lanau A. Protein predictive modeling
and simulation of mutations of presenilin-1 familial alzhei-
mer's disease on the orthosteric site. Front Mol Biosci. 2021;
8:649990. [DOI:10.3389/ fmolb.2021.649990] [PMID]

[55] Nagahara AH, Tuszynski MH. Potential therapeutic uses
of BDNF in neurological and psychiatric disorders. Nat Rev
Drug Discov. 2011; 10(3):209-19. [DOI:10.1038/nrd3366]
[PMID]

[56] Montesinos J, Pera M, Larrea D, Guardia-Laguarta C,
Agrawal RR, Velasco KR, et al. The alzheimer's disease-as-
sociated C99 fragment of APP regulates cellular cholesterol
trafficking. EMBO ]. 2020; 39(20):€103791. [DOI:10.15252/
embj.2019103791] [PMID]

[57] Shen Q, Toulabi LB, Shi H, Nicklow EE, Liu J. The forkhead
transcription factor UNC-130/FOXD integrates both BMP
and Notch signaling to regulate dorsoventral patterning of
the C. elegans postembryonic mesoderm. Dev Biol. 2018;
433(1):75-83. [DOI:10.1016/j.ydbio.2017.11.008] [PMID]

[58] Egan MF, Kost ], Tariot PN, Aisen PS, Cummings JL, Vellas
B, et al. Randomized trial of verubecestat for mild-to-mod-
erate alzheimer's disease. N Engl ] Med. 2018; 378(18):1691-
703. [DOI:10.1056/ NEJMoa1706441] [PMID]

[59] Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA,
Denis P, et al. Beta-secretase cleavage of Alzheimer's amy-
loid precursor protein by the transmembrane aspartic pro-
tease BACE. Science. 1999; 286(5440):735-41. [DOI:10.1126/
science.286.5440.735] [PMID]

[60] Kopan R, Ilagan MX. The canonical Notch signaling
pathway: Unfolding the activation mechanism. Cell. 2009;
137(2):216-33. [DOI:10.1016/j.cell.2009.03.045] [PMID]

[61] Heneka MT, Fink A, Doblhammer G. Effect of pioglitazone
medication on the incidence of dementia. Ann Neurol. 2015;
78(2):284-94. [DOI:10.1002/ana.24439] [PMID]

[62] Peters F, Salihoglu H, Rodrigues E, Herzog E, Blume T,
Filser S, et al. BACE1 inhibition more effectively suppresses
initiation than progression of B-amyloid pathology. Acta
Neuropathol. 2018; 135(5):695-710. [DOI:10.1007/s00401-
017-1804-9] [PMID]

[63] Fissel JA, Farah MH. The influence of BACE1 on mac-
rophage recruitment and activity in the injured peripheral
nerve. ] Neuroinflammation. 2021; 18(1):71. [DOI:10.1186/
$12974-021-02121-2] [PMID]

[64] Ulland TK, Colonna M. TREM2 - A key player in micro-
glial biology and Alzheimer disease. Nat Rev Neurol. 2018;
14(11):667-75. [DOI:10.1038 / s41582-018-0072-1] [PMID]

[65] Wang S, Sudan R, Peng V, Zhou Y, Du S, Yuede CM, et
al. TREM2 drives microglia response to amyloid-p via
SYK-dependent and -independent pathways. Cell. 2022;
185(22):4153-69.€19. [DOI:10.1016/j.cell.2022.09.033] [PMID]

[66] Peng X, Feng S, Zhang P, Sang S, Zhang Y. Analysis of in-
fluencing factors of anxiety and depression in maintenance
hemodialysis patients and its correlation with BDNF, NT-3
and 5-HT levels. Peer]. 2023; 11:16068. [DOI:10.7717/
peerj.16068] [PMID]



http://rmm.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en
https://doi.org/10.1186/s13024-020-00391-7
https://www.ncbi.nlm.nih.gov/pubmed/32677986
https://doi.org/10.3390/ijms24098417
https://www.ncbi.nlm.nih.gov/pubmed/37176125
https://doi.org/10.1016/j.neulet.2011.03.084
https://www.ncbi.nlm.nih.gov/pubmed/21501661
https://doi.org/10.3233/JAD-181291
https://doi.org/10.3233/JAD-181291
https://www.ncbi.nlm.nih.gov/pubmed/30958370
https://doi.org/10.14336/AD.2024.0322
https://doi.org/10.14336/AD.2024.0322
https://www.ncbi.nlm.nih.gov/pubmed/38607741
https://doi.org/10.3389/fnagi.2023.1087072
https://www.ncbi.nlm.nih.gov/pubmed/37455931
https://doi.org/10.1073/pnas.1619574114
https://www.ncbi.nlm.nih.gov/pubmed/28082723
https://link.springer.com/chapter/10.1007/978-3-319-72938-1_3#citeas
https://link.springer.com/article/10.1186/S13024-022-00574-4
https://doi.org/10.1038/s41582-022-00749-z
https://www.ncbi.nlm.nih.gov/pubmed/36513730
https://doi.org/10.3390/cells9102166
https://www.ncbi.nlm.nih.gov/pubmed/32992716
https://doi.org/10.3390/ijms24087446
https://www.ncbi.nlm.nih.gov/pubmed/37108607
https://doi.org/10.3390/ijms23062967
https://www.ncbi.nlm.nih.gov/pubmed/35328387
https://doi.org/10.3389/fmolb.2021.649990
https://www.ncbi.nlm.nih.gov/pubmed/34150846
https://doi.org/10.1038/nrd3366
https://www.ncbi.nlm.nih.gov/pubmed/21358740
https://doi.org/10.15252/embj.2019103791
https://doi.org/10.15252/embj.2019103791
https://www.ncbi.nlm.nih.gov/pubmed/32865299
https://doi.org/10.1016/j.ydbio.2017.11.008
https://www.ncbi.nlm.nih.gov/pubmed/29155044
https://doi.org/10.1056/NEJMoa1706441
https://www.ncbi.nlm.nih.gov/pubmed/29719179
https://doi.org/10.1126/science.286.5440.735
https://doi.org/10.1126/science.286.5440.735
https://www.ncbi.nlm.nih.gov/pubmed/10531052
https://doi.org/10.1016/j.cell.2009.03.045
https://www.ncbi.nlm.nih.gov/pubmed/19379690
https://doi.org/10.1002/ana.24439
https://www.ncbi.nlm.nih.gov/pubmed/25974006
https://doi.org/10.1007/s00401-017-1804-9
https://doi.org/10.1007/s00401-017-1804-9
https://www.ncbi.nlm.nih.gov/pubmed/29327084
https://doi.org/10.1186/s12974-021-02121-2
https://doi.org/10.1186/s12974-021-02121-2
https://www.ncbi.nlm.nih.gov/pubmed/33722254
https://doi.org/10.1038/s41582-018-0072-1
https://www.ncbi.nlm.nih.gov/pubmed/30266932
https://doi.org/10.1016/j.cell.2022.09.033
https://www.ncbi.nlm.nih.gov/pubmed/36306735
https://doi.org/10.7717/peerj.16068
https://doi.org/10.7717/peerj.16068
https://www.ncbi.nlm.nih.gov/pubmed/37750080

Khorrami M, et al

[67] Anderson KM, Ashida H, Maskos K, Dell A, Li SC, Li YT.
A clostridial endo-beta-galactosidase that cleaves both blood
group A and B glycotopes: The first member of a new glyco-
side hydrolase family, GH98. ] Biol Chem. 2005; 280(9):7720-
8. [DOI:10.1074/bc.M414099200] [PMID]

[68] Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et
sl. The neuronal sortilin-related receptor SORL1 is geneti-
cally associated with Alzheimer disease. Nat Genet. 2007;
39(2):168-77. [DOI:10.1038 /ng1943] [PMID]

[69] He P, Zhong Z, Lindholm K, Berning L, Lee W, Lemere C, et
alY. Deletion of tumor necrosis factor death receptor inhibits
amyloid beta generation and prevents learning and memory
deficits in Alzheimer's mice. J Cell Biol. 2007; 178(5):829-41.
[DOI:10.1083 /jcb.200705042] [PMID]

[70] Jayaraman A, Htike TT, James R, Picon C, Reynolds R.
TNF-mediated neuroinflammation is linked to neuronal
necroptosis in Alzheimer's disease hippocampus. Acta Neu-
ropathol Commun. 2021; 9(1):159. [DOI:10.1186/ s40478-021-
01264-w] [PMID]

Research in Molecular Medicine

Res Mol Med, 2024; 12(3):75-92



http://rmm.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en
https://doi.org/10.1074/jbc.M414099200
https://www.ncbi.nlm.nih.gov/pubmed/15618227
https://doi.org/10.1038/ng1943
https://www.ncbi.nlm.nih.gov/pubmed/17220890
https://doi.org/10.1083/jcb.200705042
https://www.ncbi.nlm.nih.gov/pubmed/17724122
https://doi.org/10.1186/s40478-021-01264-w
https://doi.org/10.1186/s40478-021-01264-w
https://www.ncbi.nlm.nih.gov/pubmed/34625123

