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Clinical Application of Actinium-225 Radiopharma-
ceuticals in Targeted Alpha Therapy

Among the vast variety of radionuclides available, a handful of them possess proper features for 
targeted alpha therapy (TAT). TAT holds the promise of exceeding the effectiveness of conventional 
radiotherapy methods. Actinium-225 is considered to be an outstanding isotope for TAT in the 
management of cancer due to its half-life, which enables sustained delivery at the tumor site. This 
review covers the clinical applications of actinium-225 radiopharmaceuticals.
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Introduction

argeted therapy has emerged as a signifi-
cant alternative treatment modality for 
cancer, complementing traditional ap-
proaches such as surgery, chemotherapy, 
and external beam radiation. Among the 

Food and Drug Administration (FDA)-approved tar-
geted therapeutics are monoclonal antibodies and small 
molecules, including tyrosine kinase inhibitors [1]. Ad-
ditionally, targeted receptor therapy (TRT) is rapidly 
gaining traction as a valuable class of treatment, offering 
the unique advantage of delivering therapeutic effects 
across all cancer sites through selective tumor uptake 
and retention. This advancement enhances the options 
available for effective cancer management [2]. TRT uses 
a specialized targeting vector that shows selective bind-
ing and affinity toward tumors. These method provides 
high retention of radionuclides in tumor or the tumor 
microenvironment (TME), leading to successful thera-
peutic results [3]. 

Antibody platforms, peptides, proteins, and small mol-
ecules are frequently used as targeting vectors in TRT 
and diagnosis [2, 4]. An essential consideration in evalu-
ating the therapeutic potential of vectors is the kinetic 
profile of the carrier. Generally, vector molecules that 
exhibit an extended circulation time in the bloodstream 
demonstrate enhanced tumor accumulation are advanta-
geous for the efficacy of TAT. However, it is important 
to recognize that prolonged residence time in circulation 
may lead to an increased radiation dose to healthy tis-
sues. Therefore, the half-life of the radionuclide must 
align with the plasma half-life of the vector to achieve 
an optimal tumor-to-background ratio. It is noteworthy 
that selectivity for radiation-induced damage to malig-
nant tissues may be greater with longer-lived radionu-
clides, which is advantageous in a therapeutic context 
while short lived radionuclides are proper for imaging 
purposes [5-7]. The radionuclides chosen for TRT are 
primarily those that emit α and β particles, as well as Au-
ger electrons [2, 3, 8]. 

Alpha Decay for TRT

α-decay is the release of an α-particle, made up of two 
protons and two neutrons, from the nucleus. This pro-
cess enables the specific destruction of tumor cells while 
protecting healthy tissue, due to the restricted penetra-
tion depth of α-particles, which ranges from 40 to 80 µm, 
equivalent to 2 to 10 cell diameters. 

An α-particle exhibits a linear energy transfer (LET) of 
100 keV/µm, leading to a significant relative biological ef-
fect (RBE). The higher LET leads to an increased occur-
rence of double-strand and clustered DNA breaks, leading 
to cells being damaged irreparably. As a result, α-emitting 
radioisotopes display substantial cytotoxicity in both nor-
moxic and hypoxic tumor environments, with the latter 
generally showing more resistance to radiation treatments 
based on photons and electrons [9]. Targeted alpha therapy 
(TAT) emerges as a promising approach in cancer treatment, 
particularly for tumors with small diameters that exhibit a 
spatially homogeneous expression of the target molecule. 
Prior to initiating TAT, it is essential to confirm the adequate 
expression of the targeted receptor within the malignant 
tissue. This verification can be achieved through imaging 
techniques such as positron emission tomography (PET) or 
single photon emission computed tomography (SPECT), 
following the administration of a diagnostic counterpart 
to the therapeutic radiopharmaceutical. Numerous studies 
have demonstrated favorable therapeutic outcomes associ-
ated with TAT. 

Actinium-225 

Actinium-225 is an alpha-emitting radionuclide that has 
a half-life of 9.9 days. It undergoes a series of decay pro-
cesses, resulting in the production of six short-lived radio-
nuclide daughters before reaching a state of near-stable bis-
muth-209. During the decay, Ac-225 emits a total of four 
alpha particles, each with energies ranging from 5.8 to 8.4 
MeV. These alpha particles can penetrate tissues to a depth 
of 47 to 85 μm. Additionally, the decay cascade includes 
two beta disintegrations with energies of 1.6 and 0.6 MeV. 
Moreover, the disintegrations of francium-221 and bis-
muth-213 give rise to the emission of gamma rays, which 
can be utilized for imaging purposes (Figure 1) [10]. 

Actinium naturally occurs as a result of the radioactive 
decay of uranium radionuclides. The production of actini-
um-225 can be achieved through the decay of uranium-233 
or the process of neutron transmutation, involving the con-
version of radium-226 into actinium-227, and subsequently 
thorium-228 into thorium-229, via successive capture decay 
reactions. The primary method employed for the produc-
tion of actinium-225 has been the radiochemical extraction 
from thorium-229, which has been in practice since the 
early 1990s. The acquisition of thorium-229 sources, with a 
half-life of approximately 7917 years, involves the separa-
tion from aged, fissile uranium-233 [11, 12]. Actinium-225 
is considered to be an outstanding isotope for TAT in the 
management of cancer due to its half-life, which enables 
sustained delivery at the tumor site. The utilization of actini-
um-225 and its offspring bismuth-213 in labeling molecules 
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for TAT is common. Alpha particles typically possess a 
range of 40-90 μm in tissue, effectively covering the dimen-
sions of a typical vessel within a tumor and concentrating 
a substantial amount of energy in a localized area, thereby 
mitigating bystander damage. The emitted alpha particle(s) 
can induce notable radiation damage owing to their high 
linear energy transfer; however, their limited range results 
in lesser harm to the neighboring tissues [13-15]. The prog-
eny of the radionuclide actinium-225 evades and undergo 
the process of circulation throughout the body, ultimately 
accumulating in various organs, particularly the kidneys. 
This accumulation has deleterious effects on healthy or-
gans. Presently, the primary concern lies in the renal toxic-
ity caused by the release of bismuth-213. As a result, there 
is a consensus to explore alternative approaches, such as 
employing nano-vehicles, to mitigate the recoil effect of the 
actinium-225 progeny and enable specific deposition of the 
radionuclides at predetermined sites [1, 16]. 

Radiotracers and Clinical Applications

Studies have investigated the clinical application of TAT 
with different radionuclides for the treatment of various 
cancers including prostatic cancer, neuroendocrine tumors, 
hematologic malignancies and glioblastoma. From these 
cancers, prostatic cancer has been more studied and most 
of these clinical studies, have investigated the therapeutic 
efficiency of the [225Ac]Ac-DOTA-PSMA in metastatic cas-
tration-resistant prostate cancer (mCRPC) patients.

There are some reports of great therapeutic response fol-
lowing treatment with actinium-225 based alpha radioim-
munotherapy in mCRPC patients resistant to both con-
ventional therapies and 177Lu-based radioimmunotherapy. 
Some studies have reported cancer progression and ap-
pearance of new metastatic lesions despite initial clinical 
and biochemical response following a four cycle of [225Ac]
Ac-DOTA-PSMA in a mCRPC patient [17]. The first clini-
cal experience with [225Ac]Ac-DOTA-PSMA-617 reported 
significant radiological and biochemical response in two 

prostatic cancer patients who had been heavily treated prior 
to alpha-radioimmunotherapy [18]. All the clinical studies 
on [225Ac]Ac-DOTA-PSMA-617 are listed in Table 1 with 
details. 

Some studies evaluated the feasibility of actinium-225 la-
beled substance-P ([225Ac]Ac-DOTA-SP) for the treatment 
of glioblastoma. [225Ac]Ac-DOTA-SP was injected through 
a catheter-port system for the local delivery of the treatment 
to the tumor. PET/CT scans using [68Ga]Ga-DOTA-SP, 
coinjected with [225Ac]Ac-DOTA-SP, was performed for 
the assessment of the tumor delivery of the treatment and 
revealed high uptake at the tumor site and in most cases, 
with less than 3% and 1% of injected activity accumulated 
in the blood pool and bladder, respectively. For assessment 
of the treatment related toxicity, blood cell counts, kidney 
function tests and liver enzymes were measured. No new-
onset epilepsy or focal neurological symptoms was noted 
following treatment [19].

Other studies reported remarkable disease control and 
radiological response following [225Ac]Ac-DOTA-TATE 
therapy. To that end, all patients had clinical response with 
improvement in quality of life and displayed no significant 
toxicity and change in laboratory parameters. Some of the 
patients experienced gastrointestinal symptoms like nausea 
which were related to concurrent amino-acid infusion [20].

Recently, the promising therapeutic results have ob-
tained with [225Ac]Ac-DOTA-lintuzumab targeting 
CD33-positive cells in patients with refractory or re-
lapsed acute myeloid leukemia. In this study, the patients 
exhibited reduction in peripheral blood blasts and bone 
marrow blasts, respectively. The maximum tolerated 
dose determined to be 111 kBq/kg, as the highest dose of 
148 kBq/kg led to significant marrow toxicity [21]. All 
the clinical studies are mentioned in Table 1. 
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Table 1. Overview of human studies with Actinium-225

Radiotracer Main Findings Toxicities Ref.

[225Ac]Ac-DOTA-SP A suitable choice for recurrent glioblastoma therapy. No significant liver, kidney, and hematological 
toxicity. [19]

[225Ac]Ac-DOTA-TATE 

Significant improvement in all scores of ECOG, KPS, and 
analgesic score.

Significant improvement of QLQ-H&N35 scores in head & neck 
paraganglioma patients.

No patient experienced complete remission.

No hepatological, renal, and grade III/IV 
hematological toxicities. [20]

Increased tumor uptake with 7 MBq of [225Ac]Ac-DOTA-TATE No significant side effect. [22]

Favorable uptake in mass lesions.
Favorable potential choice for cases with prior resistant to 

[177Lu]Lu-DOTA-TATE.
No significant toxicity. [23]

Improvement of life quality.
Significant decrease in symptom.

No significant alteration in the sexual function and social 
function.

No significant reduction of chromogranin level after therapy. 

Significant decrease in gastrointestinal 
symptoms.

Low toxicity profile in the short-term follow-up.
[24]

Strong SSTR2 expression identified by PET/CT in 30% of 
patients. 

Evaluation of treatment efficacy in patients led to near 
complete response.

No side effect. [25]

[225Ac]Ac-DOTA-
PSMA-617

Slowing down disease progression. No significant side effect. [17]

Significant improvement in functional and biochemical 
response.

Decrease serum level of PSA level following the second cycle 
therapy.

No significant side effect. [26]

Long-lasting complete remission by 3 cycles of 225Ac-PSMA-617
Decreased PSA level below the limit range.

Increased creatinine level. 
Chronic xerostomia. [27]

No treatment response.
Both patients died owing to cancer progression.

Both cases with prior CKD developed 
progressive CKD. [28]

Complete imaging response in both patients.
Patients experienced a PSA decline below measurable.

Xerostomia 
No relevant hematological toxicity. [18]

Remarkable antitumor activity evidenced by tumor marker 
decline.

Objective radiologic response in 80% of the patients.
Insufficient antitumor response without toxicity with a 

treatment activity of 50 kBq/kg.
A balanced trade-off between toxicity and biochemical 

response with a treatment activity of 100 kBq/kg repeated 
every 8 weeks.

Dose-limiting toxicity (severe xerostomia). [29]

PSA declines in patients.
Median tumor control duration was 9 months under last-line 

therapy.
Five patients had sustained responses for more than two years.

Xerostomia [30]

PSA decline >90% reported in 82% of patients.
41% of patients showed undetectable serum PSA after 12 

months treatment.
Reducing the administered activities in subsequent treatment 

cycles resulted in decreased toxicity to salivary glands.
A > 50% decrease in lesions avidity was seen in patients.

Grade 1/2 xerostomia reported in all patients. [31]

PSA decline >50% reported in 70% of patients.
PSA reduction observed in 83% of patients.

Xerostomia reported in 85% of patients.
Anemia reported in 38.5% of patients.

Renal failure grade III-IV in patients with history 
of renal impairment.

[32]

PSA decline >50% reported in 65% of patients.

Grade 1/2 xerostomia reported in all patients, 
and discontinuation occurred in number of 

patients.
One-third of patients experienced grade 3/4 

hematological toxicity.

[33]
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Radiotracer Main Findings Toxicities Ref.

[225Ac]Ac-DOTA-
PSMA-617

PSA decline >50% reported in 65% of patients.
Utilizing low-activity 225Ac-PSMA-617 / full-activity 177Lu-

PSMA-617 in a single course of tandem therapy increased the 
response to therapy.

Grade 1 and 2 xerostomia reported in 40% and 
25% of patients. [34]

PSA decline >50% reported in 46% of patients.
Significant improvements in the disease-related symptoms.

A notable improvement reported in pain levels, difficulties with 
urination, bone discomfort, fatigue, and limitations in physical 

activity.

No notable alterations were observed in the 
subscore for treatment side effects. [35]

PSA declines ≥50% and ≥90% reported in 69% and 46% of 
patients.

More than 90% decrease in total tumor volume was seen in all 
patients.

A clinically significant reduction in pain.
Improvement in quality of life.

Persisted xerostomia observed during follow-up. [36]

Significant efficacy reported by tandem therapy of [225Ac]Ac-
PSMA-617 and [177Lu]Lu-PSMA-617 for mCRPC patients.

Stable disease, partial remission, disease progression reported 
in 41.2%, 29.4%, and 29.4% of patients.

Better survival reported among patients experienced partial 
remission.

Except discordant in 29.4% of cases, high levels of concordance 
were demonstrated in molecular imaging responses and 

biochemical PSA responses.
Molecular imaging response demonstrated a greater 

estimation value for survival outcomes following tandem 
therapy than changes in PSA levels.

Well-tolerated. [37]

Resolution of all symptoms after 7 weeks of follow-up
Decrease in PSA level by 99% after treatment.

A notable decrease in the size and avidity of all metastatic 
lesions.

Mild xerostomia.
No significant toxicity. [38]

Both the parotid and submandibular glands were impacted by 
radiation exposure.

Sialendoscopy, combined with dilatation, and steroid injection, 
demonstrated significant improvements in salivary gland 

function. 

No complications took place after 
sialendoscopy. [39]

Favorable anti-tumor effect among 80% of patients.
Significant risk factors for hematologic toxicity related to [225Ac]
Ac-PSMA-617 included the number of treatment cycles, renal 

dysfunction, and age.
PSA response reported in 80.2% of patients.

Severe hematologic toxicity rarely occurred. [40]

PSA decline >50% reported in 91% of patients.
PSA response observed in 96% of patients.

Increased estimated median survival.

Grade I–II xerostomia was seen in 81% of 
patients.

Grade III–IV nephrotoxicity reported in 3 
patients.

[41]

Increased estimated median survival. 
Significant improvement in QOL Symptom score, including 

fatigue, pain, constipation, and insomnia.
Xerostomia was the most common side effect. [42]

PSA decline >50% reported in 50% of patients.
PSA response observed in 75% of patients.

Increased estimated median survival.

No significant difference between the pre- and 
post-treatment conditions in terms of side 

effects.
[43]

[225Ac]Ac-DOTA--PSMA-
I&T 

PSA decline >50% reported in 50% of patients.
PSA response observed in 79% of patients.

No acute toxicity.
The main toxicity was grade 1-2 xerostomia. [44]

The α-targeted response achieved by two cycles of 225Ac-PSMA-
I&T.

Grade 2 xerostomia
No grade 3/4 hematological side effects. [45]

[225Ac]Ac-DOTA-TOC

Partial remission by one cycle of 225Ac-DOTATOC therapy after 
failure of β-emitter PRRT with 90Y and 177Lu.

Significant lower lesions after 3 months.
Well-tolerated. [46]

Administering 20 MBq per cycle, with a repetition every 
four months, and cumulative doses reaching 60–80 MBq is 

considered reasonable.
Pre-existing renal risk factors significantly contribute to the 

likelihood of treatment-related kidney failure.

Dose-dependent acute hematological toxicity. [47]
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