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Synergism Effects of Vancomycin and Zinc 
Oxide Nanoparticles on Methicillin Resistance 
Staphylococcus aureus (MRSA) and Lung Cancer

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen 
and a historically emerging zoonotic pathogen of public health and veterinary importance. It can 
cause severe chronic infections. The morbidity of MRSA infections has increased worldwide and is 
of great concern. Nevertheless, a change in treatment strategies, including the use of new antibiotics 
or combination therapy, is necessary for the treatment of this infection. The research investigated the 
synergistic effects of vancomycin and zinc oxide on MRSA and the viability of the lung cancer cell 
line A549 and the normal cell line BEAS. 

Materials and Methods: In this study, the minimum inhibitory concentration (MIC) of zinc oxide 
nanoparticles (ZnO-NPs) and vancomycin was determined using the microdilution method. The 
fractional inhibitory concentration index (FICI) was calculated using the checkerboard method to 
evaluate the synergistic effect of ZnO-NPs and vancomycin. The effect of the combination of ZnO-
NPs and vancomycin on the viability of lung cancer cell line A549 was also tested by MTT assay.

Results: The MIC values showed that all isolates were sensitive to vancomycin with the exception 
ofexcept for one isolate with an MIC of ≤2 µg/mL. The synergistic effect of the combination of ZnO 
NPs and vancomycin was observed in two MRSA isolates and one MSSA strain using the checkerboard 
methodUsing the checkerboard method, the synergistic effect of the combination of ZnO-NPs and 
vancomycin was observed in two MRSA isolates and one MSSA strain. The combination of vancomycin 
and ZnO NPs caused less viability in the A549 lung cancer cell line (25.7%) than in BEAS (90%).

Conclusion: Combining vancomycin and ZnO-NPs at appropriate dosage intervals may be beneficial 
in treating MRSA. The combination of vancomycin and ZnO-NPs may also play a dual role in lung 
cancer patients with evidence of resistance to MRSA by reducing cancer cell survival.
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Introduction

taphylococcus aureus was first identi-
fied in the 1880s in purulent fluid from 
a leg abscess [1]. S. aureus is a genus of 
ubiquitous gram-positive bacteria and is a 
major cause of endocarditis, bacteremia, 

osteomyelitis, and skin or soft tissue infections. With the 
advent of hospital medicine, S. aureus quickly became a 
major cause of healthcare-associated infections [2]. Ge-
nomic evidence suggests that methicillin resistance pre-
ceded the first clinical use of anti-staphylococcal penicil-
lin [3]. Following the emergence of methicillin-resistant 
species in the 1960s, the global health community has 
become increasingly concerned. Methicillin-resistant S. 
aureus (MRSA) was first observed in clinical isolates 
from hospitalized patients in the 1960s but has spread 
rapidly in the population since the 1990s [4]. MRSA 
always shows a multidrug-resistant pattern to penicil-
lin and various antimicrobial classes such as macro-
lides, fluoroquinolones, aminoglycosides, tetracyclines, 
and lincosamides. Methicillin resistance is mediated by 
mecA and acquired by horizontal transfer of a mobile 
genetic element called staphylococcal cassette chromo-
some mec (SCCmec). This gene encodes a penicillin-
binding protein (PBP2a) that reduces the affinity for 
beta-lactam antibiotics [5]. Today, MRSA strains remain 
a severe challenge in hospitals. Treatment of patients 
infected with MRSA has been less effective than those 
infected with methicillin-susceptible S. aureus (MSSA), 
resulting in higher hospitalization rates and costs.

Vancomycin is one of the oldest antibiotics used 
clinically for almost 60 years. Vancomycin is effective 
against gram-positive bacteria such as staphylococci, 
enterococci, streptococci, pneumococci, and listeria. Re-
cently, vancomycin is usually used for infections caused 
by MRSA. However, in some cases, vancomycin is inef-
fective because it penetrates weakly into the tissue, does 
not act against biofilms, does not inhibit toxin produc-
tion, and has only a weak inhibitory effect on bacte-
ria. Therefore, there is an urgent need to find effective 
treatments for these infections. Since developing new 
antibiotics is difficult, expensive, and time-consuming, 
researchers focus more on combination therapy as an 
alternative to treating the infection [6-8]. Nowadays, 
nanotechnology represents an innovative approach to 
developing new formulations based on the antimicrobial 
properties of metallic nanoparticles [9]. Nanoparticles of 
silver, copper, zinc, iron, titanium, and metal oxide are 
considered antimicrobial agents against multidrug-resis-
tant bacteria [10-12]. The interaction of antibiotics with 
nanoparticles is the most common among studies test-

ing the combined effect of nanoparticles with antibiotics. 
Therefore, nanoparticles could be used as a safe alterna-
tive strategy for antibacterial activities. Some studies have 
found that the efficacy of antimicrobial agents can be 
enhanced by combining them with nanoparticles against 
various pathogens, including S. aureus, Pseudomonas ae-
ruginosa, and Escherichia coli [9]. Zinc oxide nanopar-
ticles (ZnO-NPs) show potential antibacterial activity in 
gram-positive and gram-negative bacteria. Treatment of 
bacterial cells with ZnO-NPs leads to the formation of 
reactive oxygen species (ROS), lipid peroxidation, and 
the release ofing bacterial cells with ZnO-NPs leads to 
the formation of ROS, lipid peroxidation, and releasing 
reducing sugars, proteins, and DNA from the membrane 
[13]. The molecular weight of zinc oxide is 81.38 g/mol, 
and its density is 5.606 g/cm3 [14]. The exact physical and 
chemical properties of ZnO-NPs depend on the different 
methods used to synthesize them. ZnO-NPs have unique 
physical and chemical properties such as high chemi-
cal stability, high electrochemical coupling coefficient, 
a broad spectrum of radiation absorption, paramagnetic 
character, and high photostability [15].

Previous studies have also shown improved ZnO 
nanoparticles’ activity when combined with cephalospo-
rins, beta-lactams, and aminoglycosides against various 
pathogenic microorganisms [9]. Despite the promising 
results that nanomaterials have achieved regarding their 
antibacterial effect, some problems still prevent their 
use on a clinical scale. Knowledge about the interaction 
of nanomaterials with cells and tissues is still limited. 
Therefore, before nanomaterials are used as antibacte-
rial drugs, a complete evaluation and risk assessment of 
their side effects must be done. Recent research shows 
intravenously injected NPs can accumulate in the bone 
marrow, liver, lung, colon, and spleen [16]. Some studies 
also showed the interaction of antibacterial nanomateri-
als with cells and the generation of intracellular oxida-
tive stress by free radicals, causing hepatotoxicity and 
pulmonary toxicity. Nanoparticles can cause hemolysis 
of red blood cells, abnormal sedimentation, hemagglu-
tination, and disruption of chromosome segregation and 
centrosome proliferation [17]. In general, the toxicity of 
nanoparticles such as ZnO depends on the size, concen-
tration, and duration of treatment [18].

Today, the effects of nanoparticles on the viability of 
normal and cancer cells are of great importance. Com-
bining antibacterial drugs and ZnO-NPs can be a promis-
ing drug delivery system in inhibiting cancer cells. Since 
the response of cancer cells to drugs is non-consistent, 
a quantitative analysis of synergistic, additive, and an-
tagonistic effects is critical before investigating sensitiv-
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ity [19]. The human lung adenocarcinoma A549 is well 
suited as a lung epithelial cell line for in vitro toxicity 
studies of nanomaterials [20]. When studying the effect 
of ZnO nanoparticles on cell growth and metabolism, the 
MTT method can be used to evaluate cell survival [21]. 
In this study, we investigated the effect of the combi-
nation of vancomycin and zinc oxide in inhibiting the 
cancer cell line at different doses. In addition, the BAES 
cell line was studied as a normal cell line to control the 
effect of the combination of vancomycin and zinc oxide.

Materials and Methods

Clinical samples collection and isolation of MRSA 
and MSSA

Sixteen S. aureus isolates, including 14 MRSA and 
2 MSSA, were obtained from patients hospitalized at 
Imam Khomeini Hospital in Sari City, Iran. The sam-
ples were collected in sterile bottles and brought to the 
laboratory to isolate the S. aureus bacterial strains. We 
analyzed the samples to identify the microorganisms and 
determine their antibiotic susceptibility. Each MRSA 
isolate was confirmed with cefoxitin using the disk diffu-
sion method recommended by the Clinical and Labora-
tory Standards Institute (CLSI). In addition, the presence 
of the mecA gene in each MRSA isolate was verified 
by polymerase chain reaction (PCR). The MRSA strain 
COL served as a control for all tests.

Minimum inhibitory concentration (MIC)

The broth microdilution method was used for each bac-
terial sample to determine the MIC. MIC is defined as 
the lowest concentration of an antimicrobial agent that 
inhibits the visible growth of a microorganism after 
overnight incubation. Diagnostic laboratories mainly use 
MICs to confirm resistance, but they are most commonly 
used as a research tool to determine the in vitro activity 
of new antimicrobials [22]. The antimicrobial activity 
of vancomycin and ZnO-NPs  was evaluated using the 
broth microdilution method. For this purpose, successive 
concentrations of zinc oxide 250, 125, 62.5, 32, 16, 8 µg/
mL and vancomycin 8, 4, 2, 1, 0.5 µg/mL were diluted in 
sterile distilled water and added separately to Mueller-
Hinton broth (MHB) culture medium. Then, 1.5×105 of 
the MRSA and MSSA isolates were inoculated. At the 
end, the microplate was evaluated after incubation at 37 
°C for 18–24 hours, and the OD was read at 570-630 nm. 
The MIC is determined as the concentration of the drug 
that inhibits the visible growth of the bacteria.

Checkerboard method

The checkerboard method is used to evaluate the in-
teraction between the antibiotic of choice and the ZnO-
NPs. To determine synergistic effects with combined 
drugs, we used the checkerboard method containing dif-
ferent ZnO-NPs and vancomycin concentrations. This 
method added vancomycin at the highest concentration 
(16 mg/mL) to the first 96-well microplate column, then 
decreased doublings until the last column. Then, the zinc 
oxide nanoparticle at the highest concentration (500 mg/
mL) was added to the first row, followed by decreasing 
doublings to the last row, and a combination of the con-
centrations of the two drugs was added to the remaining 
wells. The bacterial inoculum was approximately 5×105 
CFU/mL. Finally, the microplate was incubated at 37 °C 
for 18-24 hours.

After incubation, the microplate was read at 570-630 
nm using an ELISA reader. The fractional inhibitory 
concentration index (FICI) was calculated for each com-
bination. The mean FICI of all turbidity-free wells along 
the boundary between turbidity and non-turbidity was 
then calculated [9]. To determine the correlation between 
the two drugs, the FICI was calculated using the Equa-
tion 1:

1. FICI=FICAb+FICNP 

where FICAb=(MIC of Ab in the presence of NP)/ (MIC 
of Ab alone)

and FICNP=(MIC of NP in the presence of Ab)/(MIC of 
NP alone). Then, the FICI value was interpreted follow-
ing the interpretation ranges.

If the result of the FICI is less than or equal to 0.5, it 
is considered a synergy; if it is >4, it is considered an 
antagonism; if it is between >0.5 and ≤1, it is an additive 
result; and if it is between >1 and ≤4, it is considered an 
indifference.

Evaluation of the viability effect of ZnO-NPs and 
vancomycin at single and combined concentra-
tions on the human lung cancer cell line A549 and 
the normal human epithelial cell line BEAS by 
MTT assay

Two different cell lines, including A-549, a lung can-
cer cell line, and BEAS, a normal human epithelial cell 
line, were cultured and scattered in 96-well cell culture 
plates containing DMEM/high glucose (ATOCEL, Aus-
tria) with 10% fetal bovine serum (FBS, west, USA) 
at a concentration of 1×105 cells/well. The cells were 
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incubated at 37 °C and 5% CO2 for 48 hours to reach 
their logarithmic growth phase. Subsequently, different 
amounts of vancomycin (8, 4, 2, 1, and 0.5 µg/mL) and 
zinc nanoparticles (500, 250, 125, 62, and 32 µg/mL) 
were added separately and combined with triplicate cul-
ture cells. A positive control (doxorubicin) and a nega-
tive control (culture medium without cells) were also 
included. After 72 hours of incubation at 37 °C, 20 µL 
MTT solution (5 mg/mL) was added to each well. After 
incubation for 4 hours at 37 °C, the MTT solution was 
removed, and 200 µL DMSO solution was added. Then, 
everything was mixed with the pipette and incubated at 
37 °C for 10 minutes. The viability of the cells was deter-
mined in the microplate at 570 nm.

In this study, data analysis was done by Excel and 
Prism software. In addition, the comparison between the 
groups was carried out using the t-test.

Results

MIC method

Antimicrobial susceptibility testing of ZnO-NPs and 
vancomycin against 13 clinical MRSA isolates, the 
standard MRSA strain, and two clinical MSSA isolates 
was performed in broth using the standard microdilution 
method (Table 1). The MIC for zinc oxide was 7.1 of the 
MRSA isolates at a concentration of 16 and 32 µg/mL 
and 42.8% and 28.5% of the MRSA isolates at 62.5 and 
125 µg/mL, respectively. In addition, the MIC in 50% 
of the MSSA isolates was 125 or 250. The MIC values 
for vancomycin at concentrations of 0.5, 1, and 4 µg/mL 
were 58%, 42.8%, and 7.1% in MRSA isolates. Accord-
ing to the MIC data, all isolates except one were sensi-

tive to vancomycin, with an MIC of ≤2 µg/mL. The MIC 
of the remaining isolate was 4 µg/mL.

The revised CLSI guidelines define an S. aureus strain 
with an MIC of ≤2 µg/mL as vancomycin-sensitive S. 
aureus. Also, S. aureus with an MIC between 4 and 8 µg/
mL is considered a vancomycin-intermediately sensitive 
S. aureus strain, and a strain with an MIC of >8 µg/mL is 
considered a vancomycin-resistant S. aureus strain [23].

Checkerboard method

The concentration for the checkerboard test was select-
ed according to the MIC data. This method showed the 
best synergistic effect when two drugs were combined. 
The MIC and FIC results are shown in Table 2. The low-
est FICI values of the combinations are listed in this 
Table. These lowest FICI values were determined as a 
synergistic effect based on the defined standards.

Specifically, the synergistic effect of vancomycin and 
zinc oxide was observed in two MRSA isolates, 214 
(FICI 0.46) and 217 (FICI 0.32), and in one MSSA 
strain: 232 (FICI 0.31).

MTT assay

According to the results of the checkerboard method, 
the best concentrations of vancomycin and ZnO-NPs 
were selected in this step. The viability result is shown 
in Figure 1.

In brief, according to the results of the MTT test with 
A-549, viability was shown at the sole concentration of 
ZnO-NPs (16, 32, 62.5, 125 µg/mL) (100%, 99.73%, 

Table 1. MIC results of vancomycin and zinc oxide against 14 MRSA and 2 MSSA strains

Isolated
MIC Concentration

Nanoparticle Zinc Oxide
(µg/mL)

No. (%) MIC
Concentration

Antibiotic Vancomycin
(µg/mL)

No. (%)

Result Result

MRSA

16 1.14(7.1)
0.5 7.14(58)

32 1.14(7.1)

62.5 6.14(42.8)
1 6.14(42.8)

125 4.14(28.5)

250 1.14(7.1) 4 1.14(7.1)

MSSA
125 1.2(50) 0.5 1.2(50)

62.5 1.2(50) 1 1.2(50)
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76%, 25.8%) and vancomycin (0.5, 1, 2, 4, 8 µg/mL) 
(100%, 100%, 99.85%, 99.75%, 99.13%). 

The result of the viability of combined concentrations 
of zinc oxide with vancomycin (62.5+0.5, 62.5+1, 125+1 
µg/mL) on the A-549 cell line was (76 %, 76.01%, and 
25.7) respectively. The viability of BEAS cells under the 
influence of various doses of zinc oxide, vancomycin, 
and a combination of these factors was 90 and above. 
Additionally, no significant relationship was observed 
between the two groups (P=0.14).

Vancomycin had no cytotoxic effect on the A-549 and 
BEAS cell lines. Zinc oxide inhibited cell growth at 125 
µg/mL against the A-549 cell line.

Discussion

The infection caused by MRSA is a global public health 
threat. This infection has a high morbidity and mortality 
rate and represents a significant financial burden for the 
patient. Based on a meta-analysis in 2023, the pooled 
global prevalence of MRSA was 14.69%. Vancomy-
cin remains one of the drugs of first choice for treating 
MRSA infections. However, in recent years, S. aureus 
isolates with complete resistance to vancomycin have 
emerged. Nowadays, metallic nanoparticles have shown 
promising results in the fight against multidrug-resistant 
bacteria [24-26]. Recent innovations in nanotechnology 
have led to significant changes in the field of medicine, 
such as using nanoparticles to treat diseases, e.g. in can-
cer therapy and combination therapy for resistant bacte-

Table 2. Result of the checkerboard method

Isolates MICVAN MICZno NPs FICVAN FICZno NPs FICIVAN+Zno NPs Result

S214 0.5 62.5 0.4 0.06 0.46 Synergism

S232 1 62.5 0.25 0.06 0.31 Synergism

S217 1 125 0.2 0.12 0.32 Synergism

Abbreviations: MIC: Minimum inhibitory concentration; FIC: Fractional inhibitory concentration; VAN: Vancomycin; ZnO-
NPs: Zinc oxide nanoparticles. 

Figure 1. The result of viability with MTT assay

Abbreviations: MIC, minimum inhibitory concentration; FIC, fractional inhibitory concentration; 
VAN, vancomycin; ZnO-NPs, zinc oxide nanoparticles.   
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rial infections. Among metal oxide nanoparticles, ZnO 
nanoparticles have many important properties, such as 
chemical and physical stability, high catalysis activity, 
and effective antibacterial action. The antimicrobial ef-
fect of ZnO-NPs against MRSA strains, alone or in com-
bination with antibiotics, has already been suggested. 
Interestingly, ZnO-NPs have been identified by several 
reports as non-toxic to human cells. Our study focused 
on developing promising alternative agents for treating 
these severe infections, such as ZnO-NPs. ZnO-NPs in-
hibit the growth of bacterial cells through the produc-
tion of ROS, followed by membrane leakage of proteins, 
nucleic acids, and lipid peroxidation, and prevent the 
formation of biofilms. ZnO-NPs should penetrate bac-
terial cells to develop antibacterial activity. This study 
investigated the synergistic effect of ZnO-NPs with van-
comycin on 13 clinical MRSA and two clinical MSSA 
isolates [27-30]. Broth dilution can be considered an 
accurate and confirmatory method to identify the anti-
bacterial activity of ZnO-NPs. Our study has shown that 
the MICs of ZnO-NPs in S. aureus isolates ranged from 
16 to 250 µg/mL when using the broth dilution method. 
Other studies have also reported that the bactericidal ef-
fect of ZnO-NPs is concentration-dependent [31]. In a 
Sharma et al. study, the MIC of ZnO-NP against S. au-
reus was 4000 µg/mL [32]. Jesline et al. reported that 
ZnO-NPs alone, without antibiotic combination, and at 
all concentrations significantly inhibited MRSA growth. 
ZnO-NPs could inhibit bacterial growth and achieve a 
maximum zone of inhibition of 16 and 17 mm at 500 μg/
mL and a minimum zone of inhibition of 12 and 14 mm 
at 100 μg/mL [33]. Based on the data, all isolates except 
one were sensitive to vancomycin. In line with other re-
search, it was found that our sensitive MIC values are 
closely linked to MIC values in the sensitive range. 
These findings agree with Thamer and Alsammak, who 
observed that the efficacy of vancomycin was improved 
in combination with ZnO nanoparticles [34]. Venubabu 
Thati et al. [35] and Namasivayam et al. [36] also re-
ported that nanoparticles showed enhanced activity with 
several antibiotics against all tested S. aureus. As is well 
known, ZnO-NPs are antibacterial and can inhibit the 
growth of microorganisms by penetrating the cell mem-
brane and causing oxidative stress and damage to lipids, 
carbohydrates, proteins, and DNA. Lipid peroxidation 
causes changes in the cell membrane that eventually dis-
rupt vital cell functions [37, 38]. In our present study, 
the effect of ZnO-NPs suspension and vancomycin was 
evaluated using the checkerboard assay, and the FICI 
was calculated by evaluating the degree of interaction 
between ZnO-NPs and vancomycin against 13 clinical 
MRSA and two clinical MSSA isolates. Vancomycin 

showed a synergistic interaction with ZnO-NPs against 
two MRSA isolates, 214 (FICI 0.46) and 217 (FICI 
0.32), and in one MSSA strain, 232 (FICI 0.31).

This study investigated the effect of vancomycin and 
ZnO-NPs on the viability of lung cancer cell lines us-
ing the MTT method. In relation to the role of combin-
ing vancomycin with ZnO-NPs, previous studies have 
shown that the drug’s efficacy increases when combined 
with ZnO-NPs. ZnO-NPs have shown significant cyto-
toxic effects on A549 cells. Studies suggest that ZnO-
NPs can induce apoptosis via mechanisms involving in-
creased ROS production and mitochondrial dysfunction, 
leading to cell death [39]. In addition, previous studies 
have shown that treatment with ZnO-NPs and vancomy-
cin leads to significant activation of pre-apoptotic signal-
ing pathways, including increased activity of caspases, 
which are very important for the execution of apoptosis 
in cancer cells [40]. The synergistic use of vancomycin 
and ZnO-NPs could provide a dual approach against 
lung cancer cells and bacterial infections. Studies show 
that ZnO-NPs inhibit the growth of bacteria and increase 
the efficacy of antibiotics such as vancomycin against 
resistant strains. This dual action could be particularly 
beneficial for lung cancer patients at risk for infections 
due to compromised immune systems from chemother-
apy [41].

It has been previously described that ZnO-NPs de-
creased the viability of colon cancer cells. The cytotoxic 
mechanisms of ZnO-NPs are attributed to increased 
production of ROS levels and decreased mitochondrial 
membrane potential [42]. According to Heng et al., more 
than 99% of human bronchial epithelial cells remained 
viable up to 10 µg/mL of ZnO-NPs but considerably de-
creased at concentrations below 10 µg/mL [43]. Similar 
findings were reported in mouse embryo fibroblast cells, 
which at 10 and 20 µg/mL ZnO-NPs, the viability of 
cells was nearly 80% and 20%, respectively [44].

In conclusion, integrating ZnO nanoparticles with van-
comycin offers a promising strategy for improving treat-
ment protocols against MRSA infections in lung cancer 
patients. This approach targets the malignancy and ad-
dresses potential secondary infections, enhancing over-
all treatment efficacy and patient safety. Further research 
is warranted to explore this combination treatment’s full 
therapeutic potential and mechanisms.
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