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Amyloid-β Inhibiting Peptides: An Innovative Strategy 
for Alzheimer’s Disease Treatment

Alzheimer’s disease (AD), the most common neurodegenerative disorder, is characterized by the 
accumulation of amyloid-β (Aβ) plaques, leading to progressive cognitive decline. Targeting Aβ 
aggregation has become a major therapeutic focus, and peptide-based inhibitors have emerged as a 
promising approach due to their ability to specifically bind to Aβ and prevent its toxic oligomerization 
and fibril formation. This review discusses the advancements in Aβ-inhibiting peptides, including those 
derived from the Aβ sequence, as well as novel peptides discovered through phage display and mirror-
image phage display technologies. These peptides offer significant advantages such as high selectivity 
and lower neurotoxicity, making them attractive candidates for therapeutic development. However, 
critical challenges—such as enzymatic degradation, poor blood-brain barrier (BBB) penetration, 
and the tendency for self-aggregation—have limited their clinical application. To overcome these 
barriers, recent innovations such as the incorporation of D-amino acids, cyclization, and retro-inverso 
modifications have improved peptide stability and bioavailability. Despite these improvements, 
further research is essential to optimize peptide design, enhance BBB permeability, and ensure long-
term efficacy. This review emphasizes the importance of rational peptide design and the development 
of advanced delivery systems to address these limitations. By refining the molecular interactions 
and pharmacokinetic properties of Aβ-inhibiting peptides, future studies could significantly enhance 
their therapeutic potential. Ultimately, these efforts aim to advance peptide-based treatments through 
clinical trials and bring about meaningful progress in AD therapy.

A B S T R A C T

Keywords:
Alzheimer’s disease (AD), 
Peptide-based inhibitors, 
Amyloid-β, Phage display, 
Amyloid plaque

Citation Molavipordanjani S, Mojarad-Jabali S. Amyloid-β Inhibiting Peptides: An Innovative Strategy for Alzheimer’s 
Disease Treatment. Research in Molecular Medicine. 2023; 11(3):149-160. https://doi.org/10.32598/rmm.11.3.1351.1

 : https://doi.org/10.32598/rmm.11.3.1351.1

Use your device to scan 
and read the article online

Article info:
Received: 03 Jun 2024
Revised: 20 Jun 2024
Accepted: 15 Jul 2024

Article Type:

Review Paper

Copyright © 2023 The Author(s); 
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-By-NC: https://creativecommons.org/licenses/by-nc/4.0/legalcode.en), 
which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

http://rmm.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en
https://orcid.org/0000-0001-5143-9695
https://orcid.org/0000-0001-7260-9120
mailto:s.mojarad3973@gmail.com
https://doi.org/10.32598/rmm.11.3.1351.1
http://rmm.mazums.ac.ir/page/77/Copyright-statement
https://crossmark.crossref.org/dialog/?doi=10.32598/rmm.11.3.1351.1
https://creativecommons.org/licenses/by-nc/4.0/legalcode.en
https://creativecommons.org/licenses/by-nc/4.0/legalcode.en


150

Introduction

lzheimer's disease (AD) is a progressive 
and irreversible neurodegenerative dis-
order, primarily marked by the gradual 
deterioration of cognitive functions such 
as memory and executive skills. Despite 

substantial advancements in research, a definitive cure 
for the AD has yet to be identified [1, 2]. It is currently 
estimated that more than 50 million people worldwide 
are living with AD and this number is expected to in-
crease to 152 million by 2050, with a global economic 
burden of $1.1 trillion [3, 4]. A key hypothesis that is 
widely accepted in understanding the pathogenesis of 
AD is the amyloid cascade hypothesis. This hypothesis 
proposes that the accumulation of amyloid-β (Aβ) fibrils 
and their deposition in amyloid plaques are key events 
in the initiation of AD. These events cause subsequent 
pathological processes such as tau protein hyperphos-
phorylation, oxidative stress and chronic inflammation 
[5-7]. Aβ plaques are mainly composed of Aβ peptides, 
which have a molecular weight of approximately 4 kDa 
and are generated by proteolytic cleavage of the amy-
loid precursor protein (APP) [8]. The two most common 
isoforms of Aβ are Aβ40 and Aβ42, with Aβ42 being 
more neurogenic despite the abundance of Aβ40 [9-11]. 
Over time, these peptides aggregate to form oligomers, 
protofibrils, and mature fibrils, eventually leading to the 
formation of Aβ plaques that accumulate in brain tissues 
and cerebral blood vessels. These deposits are closely 
related to neuroinflammation and nerve death [10-12].

Research indicates that Aβ accumulation in the brain 
likely represents the earliest pathological event, occur-
ring years before the clinical symptoms of AD become 
evident [13, 14]. As a result, various diagnostic agents 
have been developed to detect Aβ deposition in the brain 
long before the onset of symptoms [15, 16]. Given this, 
inhibiting the aggregation of Aβ peptides and promoting 
their clearance have emerged as critical strategies for AD 
treatment. Among the approaches explored are the use of 
organic small molecules [17] and peptide-based inhibitors 
[18, 19]. Peptides, due to their high binding affinity for 
Aβ and lower toxicity, are regarded as more promising 
therapeutic candidates compared to small molecules [20].

Based on this knowledge, peptides offer significant po-
tential as therapeutic agents to inhibit Aβ accumulation, 
reduce Aβ-induced neurotoxicity, and facilitating the 
early diagnosis of AD [20]. In this review, we investi-
gate the therapeutic potential of peptide-based inhibitors 
against Aβ aggregation and discuss strategies to over-
come the challenges in this field of research.

Peptide-based Therapeutics

Therapeutic peptides have gained prominence as a ver-
satile and impactful class of bioactive compounds, play-
ing key roles in various physiological functions such as 
hormones, growth factors, neurotransmitters, ion channel 
ligands, and anti-infective agents [21]. These peptides 
demonstrate a remarkable ability to bind with cell sur-
face receptors, initiating precise intracellular signaling 
pathways due to their high specificity and affinity [22, 
23]. Compared to biologics like proteins and antibodies, 
therapeutic peptides offer distinct advantages, particu-
larly their lower immunogenicity and cost-effectiveness 
in production [24, 25]. In contrast, small molecule drugs 
have traditionally dominated therapeutic treatments be-
cause of their advantages, including lower production 
costs, ease of oral administration and effective mem-
brane penetration. However, small molecules suffer 
from a significant drawback—limited specificity. Their 
small size often leads to off-target effects, as seen with 
tyrosine kinase inhibitors like sorafenib and sunitinib, 
which not only inhibit VEGF receptors to exert anti-
angiogenic effects but also affect other kinase receptors, 
leading to cytotoxicity [26, 27]. Therapeutic peptides, 
with their larger size and flexible structures, generally 
provide greater selectivity, making them more effective 
at inhibiting large protein-protein interactions, a critical 
aspect of treating complex diseases [28]. Despite these 
advantages, therapeutic peptides are not without their 
challenges. Their limited membrane permeability and in-
stability in vivo hinder their ability to target intracellular 
molecules effectively. More than 90% of peptide drugs 
currently in development are aimed at extracellular tar-
gets because of difficulties in crossing the cell membrane 
[21]. Furthermore, the natural composition of peptides 
makes them vulnerable to rapid enzymatic degradation, 
leading to a short half-life and limiting their therapeu-
tic potential [29]. To overcome these limitations, ongo-
ing research focuses on innovative solutions, including 
chemical modifications and advanced delivery systems, 
aimed at improving peptide bioavailability, stability, and 
intracellular targeting.

The growing interest in peptide-based drugs has ex-
tended to several critical disease areas, with AD being a 
prominent example [15, 16]. Peptides, which are chains 
of two to one hundred amino acids, are gaining attention 
in AD treatment because of their ability to selectively 
target Aβ peptides [30-32]. Aβ peptides play a central 
role in forming amyloid plaques, which contribute to 
neurotoxicity and neuron degeneration in AD. Modifica-
tions such as incorporating D-enantiomer amino acids, 
cyclic structures, and other chemical alterations have 
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been shown to enhance peptide stability, improve BBB 
permeability, and reduce enzymatic breakdown, mak-
ing these peptides promising candidates for AD therapy 
[20, 33]. To date, more than 400 peptide-based drugs 
are undergoing clinical trials, with 60 already receiving 
regulatory approval [31, 34, 35]. However, challenges 
remain, particularly in improving their stability under 
physiological conditions and increasing their specificity 
for disease-related targets. Nevertheless, the continued 
development of structurally modified peptides presents 
immense promise, especially in addressing complex 
conditions like neurodegenerative disorders [20, 36]. In 
conclusion, while therapeutic peptides must overcome 
challenges related to stability and permeability, their 
unique ability to combine selectivity with adaptability 
makes them powerful tools in modern drug develop-
ment. Their expanding role, particularly in the treatment 
of diseases like AD, underscores their potential to revo-
lutionize precision medicine, offering innovative solu-
tions for previously untreatable therapeutic targets [37].

Amyloid-β (Aβ)-inhibiting Peptides

Aβ-inhibiting peptides are generally classified into two 
main categories: The first category includes peptides 
that are designed based on the sequence of Aβ itself and 
are specifically used to inhibit the aggregation of Aβ 
peptides. These peptides are usually inspired by key se-
quences in Aβ peptides and have been improved through 
molecular engineering to efficiently interact with the 
aggregation-prone regions of Aβ [38-40]. The second 
category comprises peptides identified and designed us-
ing the phage display technique. In this method, millions 
of different peptides are displayed by phages, and those 
with the highest affinity for binding to Aβ are selected 
and subsequently optimized to maximize their inhibitory 
properties. These peptides have been proposed as valu-
able tools in AD research and treatment due to their high 
accuracy and selective ability to target Aβ [41-43]. Table 
1 presents a list of selected Aβ-inhibiting peptides that 
have been designed using both methods.

Aβ-inhibiting Peptides Derived From the Aβ 
sequence

In a study by Lührs et al. the fibril structure of Aβ42 
was experimentally described for the first time [72] and 
several key regions in this structure were identified for 
effective interactions that could be used to design Aβ-
inhibiting peptides [60]. These regions include two 
hydrophobic segments (residues Ala30 to Val36 in the 
C-terminal and Lys16 to Ala21 in the N-terminal) and 

a hydrophilic region with electrostatic interactions (be-
tween Asp23 and Lys28) [73, 74]. These regions play a 
vital role in Aβ nucleation and fibril formation, making 
them ideal targets for designing Aβ peptide inhibitors 
[10, 75]. Peptides designed based on these regions bind 
to specific sites on Aβ and prevent its aggregation into 
amyloid fibrils. 

However, peptides containing natural amino acids 
face challenges due to rapid enzymatic degradation and 
a tendency for self-aggregation [76]. To address these 
issues, strategies such as incorporating D-amino acids, 
cyclization, retro-inverso analogs, fluorination, and N-
methylation have been employed [77, 78]. D-peptides, 
which show greater protease resistance and higher af-
finity for Aβ, have demonstrated better inhibition of Aβ 
aggregation in animal models compared to L-peptides 
[55]. Retro-inverso peptides, which are composed of 
D-amino acids in a reversed sequence, have shown en-
hanced protease resistance, improved BBB permeability, 
reduced self-aggregation, and more effective inhibition 
of Aβ aggregation [79]. Other successful strategies in-
clude methylation of amide groups, cyclization, and the 
use of fluorinated amino acids, which have shown stron-
ger inhibition of Aβ aggregation and higher resistance to 
enzymatic degradation [80, 81]. 

It has been reported that peptide-based inhibitors de-
rived from the Aβ sequence 17-21 (LVFFA) play an im-
portant role in inhibiting Aβ aggregation by binding to 
Aβ and preventing fibril formation [82, 83]. For example, 
peptide LK7 (Ac-LVFFARK-NH2) has demonstrated 
dose-dependent inhibition of Aβ42 fibrillation, though 
its tendency for self-aggregation has led to cytotoxicity 
[49]. To improve solubility and reduce self-aggregation, 
researchers have linked this peptide to beta-cyclodextrin 
and used poly (lactic-co-glycolic acid) nanoparticles 
(NPs), which increased its Aβ-binding affinity and ag-
gregation inhibition [49, 84]. Additionally, head-to-tail 
cyclization of the LK7 peptide has been shown to re-
duce self-aggregation, enhance Aβ binding, and improve 
proteolytic stability in serum [85]. A modified version of 
LK7, called LK7-HH, which includes two histidine resi-
dues, has been found to reduce reactive oxygen species 
(ROS) production and aid in copper ion binding [86]. 
Another peptide inhibitor, iAβ5, designed based on the 
Aβ sequence 17-21 (LPFFD), inhibits Aβ aggregation 
by preventing intramolecular hydrogen bonds in fibrils, 
as the lack of a proton on the proline nitrogen disrupts 
peptide bond formation [69, 87]. However, due to its rap-
id enzymatic degradation and limited BBB penetration, 
iAβ5 has been modified by methylation of the nitrogen 
between residues of proline and phenylalanine, increas-
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ing its stability [88]. Both in vitro and in vivo studies 
have shown that this modified peptide retains its inhibi-
tory activity against Aβ fibril formation, with increased 
protease resistance and stronger Aβ-binding stability, 
as supported by molecular dynamics simulations [88]. 
Peptide KLVFWAK, derived from the Aβ sequence 16-
22 (KLVFFAE), replaces residues of phenylalanine and 
glutamic acid with residues of tryptophan and lysine to 
enhance solubility and inhibit self-aggregation through 
electrostatic repulsion [47]. This peptide selectively tar-
gets the C-terminal of Aβ oligomers and exhibits less 
self-aggregation compared to its counterpart, KLVFF, 
while showing stronger affinity for Aβ aggregates and 
fibrils [47].

Retro-inverso peptides OR1 (RGKLVFFGR) and OR2 
(RGKLVFFGR-NH2), designed by adding residues of 
arginine and glycine to the KLVFF sequence, improve 
solubility and enzymatic stability. However, only OR2 
has demonstrated inhibition of Aβ oligomer formation 
[71]. OR2 was further modified by acetylating its C-
terminus (RI-OR2), which preserved its inhibitory ac-
tivity and enhanced proteolytic resistance in vivo [89]. 

In another study, RI-OR2 was conjugated with the cell-
penetrating peptide (CPP) TAT, which improved its cel-
lular uptake and BBB permeability [90]. CPPs are short 
cationic peptides known for their ability to cross cell 
membranes, making them effective tools for deliver-
ing drugs across the BBB [91]. Although CPPs are not 
specifically bound to certain receptors, they are widely 
used for the targeted delivery of various cargoes across 
cellular membranes [92]. One of the first reported CPPs, 
TAT, is widely recognized for its strong cell-penetrating 
ability [93]. RI-OR2-TAT has been shown to reduce Aβ 
aggregation, amyloid plaque levels, and oxidative dam-
age while promoting the formation of new neurons in 
the brain [90]. 

Peptides IIGLMVGGVVIA and VVIA, derived from 
the C-terminal of Aβ42, interact with Aβ42 monomers 
and small oligomers, particularly at the N-terminal [94]. 
Studies have shown that VVIA-NH2 can inhibit Aβ ag-
gregation at micromolar concentrations and protect 
synaptic activity; however, acetylated Ac-VVIA did not 
exhibit these effects [95]. The non-acetylated VVIA-
NH2 specifically interacts with the C-terminal, while 

Table 1. Classification of Aβ-inhibiting peptides based on design strategy

Phage Display-based Peptides Type Ref. Aβ Sequence-based Peptides Type Ref.

Ac-FYLKVQSLHHHH-NH2, designed based on common 
phage display L [44] LPFFN L [45]

RGPRGRV, designed based on Common phage display L [46] KLVFWAK L [47]

PYRWQLWWHNWS, designed based on Common phage 
display L [48] LK7/LVFFARK L [49]

RFRK, based on common phage display L [50] RR/RYYAAFFARR L [51]

XD4/PIKTLPM, designed based on Common phage 
display L [42] KLVFF L [52, 53]

KH/KSILRTSIRHTH, based on common phage display L [54] PGKLVYAKKLVFFARRRRA L [55]

AOEP2/FDYKAEFMPWDT, designed based on Common 
phage display D [56] LPYFD L [57]

ZAβ3 affibody, designed based on common phage display L [58] Diazirine-equipped cyclo-KLVF 
(b-Ph) F [59]

GABA-FPLIAIMA, designed based on LIAIMA peptide and 
molecular docking studies D [60] H102/HKQLPFFEED L -

S1/PQVGHL L [61] Fc-KLVFF L [62]

pep1/LIAIMA, based on common phage display 
pep2/IFALMG L [63] Gly (Allyl-RCM)-Xaa-Tyr

 (Allyl-RCM) - [64]

D-pep or D1/QSHYRHISPAQV, designed based on mirror 
image phage display D [65] D (KLVFW)-aminobutyric acid 

(Aib) D [66]

D3 / RPRTRLHTHRNR, designed based on mirror image 
phage display D [67] iAβ5/LPFFD L [68–70]

- - - OR1/RGKLVFFGR 
OR2/RGKLVFFGR-NH2 L and D [71]
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Ac-VVIA shows a more dispersed binding distribution. 
Ac-IGLMVG-NH2 has shown moderate efficacy in pre-
venting Aβ aggregation [96].

Aβ-inhibiting Peptides Derived From Phage 
Display 

Phage display technology is a widely used and pow-
erful method for screening diverse peptide libraries to 
identify specific, targeted peptide sequences [97, 98]. 
This technique has revolutionized the discovery of thera-
peutic peptides, enabling researchers to identify promis-
ing peptide candidates by exploiting the binding affinity 
between the created peptides and a target molecule, pav-
ing the way for further investigation into their therapeutic 
potential [99, 100]. In the field of AD, phage display has 
played a crucial role in identifying inhibitory peptides 
against key targets such as Aβ, offering new and prom-
ising therapeutic strategies [101, 102]. In this method, 
extensive peptide libraries are displayed on the surface 
of phages (viruses that infect bacteria) [100] and these li-
braries are then exposed to the target molecule. Peptides 
with the highest binding affinity to the target are selected 
[103, 104]. This precise selection allows researchers to 
identify potential therapeutic peptides that can serve as 
targeted and effective drugs for AD treatment [105]. 
Peptides derived from phage display are promising for 
clinical applications due to their high specificity and 
strong selectivity [100-102]. However, challenges such 
as susceptibility to enzymatic degradation and short half-
lives limit the therapeutic efficacy of these peptides in 
vivo [43]. To overcome these limitations, the mirror-im-
age phage display technology has been developed [106]. 
This innovative approach focuses on identifying peptides 
composed of D-amino acids, which are more resistant to 
enzymatic degradation in the body compared to the con-
ventional L-amino acid peptides. This resistance reduces 
unwanted immune responses, prolongs the peptides' 
half-life in circulation, and enhances their bioavailabil-
ity, ultimately increasing their effectiveness [107-109]. 
In mirror-image phage display (as shown in Figure 1), 
the target molecule is synthesized using D-amino acids. 
Phage display is then employed to screen L-peptides that 
bind to the D-form of the target molecule. The identified 
L-peptide is subsequently synthesized using D-amino 
acids to create a D-peptide, which is expected to bind to 
the natural L-form of the target molecule, thus enhancing 
its therapeutic applications [110].

Wiesehan et al. using mirror-image phage display, 
identified a D-peptide inhibitor called D1 or D-pep with 
the sequence QSHYRHISPAQV. This peptide was rec-

ognized as a suitable target ligand due to its resistance 
to proteases and lack of unwanted immune responses. 
Studies showed that this peptide not only binds specifi-
cally to Aβ plaques but also reduces Aβ aggregation, 
demonstrating high potential for AD diagnosis and treat-
ment [65]. van Groen et al. also used this technique to 
identify another D-peptide, D3 (RPRTRLHTHRNR), 
which specifically binds to Aβ42 [67]. Results revealed 
that D3 inhibited Aβ aggregation and converted toxic 
oligomers into non-toxic aggregates. Pharmacokinetic 
studies indicated that D3 has high proteolytic stabil-
ity and can effectively increase brain penetration [67]. 
Based on these findings, several derivatives of D3, in-
cluding D3D3, RD2 and RD2D3, have been developed, 
all of which demonstrated superior efficacy in removing 
toxic Aβ oligomers compared to D3. Pharmacokinetic 
studies of these peptides showed that all compounds 
crossed the BBB effectively, exhibited long half-lives, 
and demonstrated good accumulation in the brain [111-
114].

Wang et al. synthesized a linear peptide with the se-
quence PYRWQLWWHNWS, based on screening a 
random 12-mer peptide library against Aβ1–10 [48]. 
This peptide was capable of specifically binding to Aβ1–
10, inhibiting Aβ aggregation into plaques, and reducing 
Aβ-induced apoptosis. Additionally, it showed protec-
tive effects against Aβ-induced memory and learning 
deficits in animal models [87]. Larbanoix et al. utilized 
phage display to discover a six-amino acid linear peptide 
that prevents Aβ aggregation [63]. Two selected pep-
tides, Pep1 (LIAIMA) and Pep2 (IFALMG), showed the 
highest binding affinity to Aβ1–42 with micromolar Kd 
values. In vitro studies demonstrated that these peptides 
did not exhibit specific toxicity toward neurons and thio-
flavin T aggregation assays confirmed that the designed 
peptides inhibited amyloid fibril formation [63]. 

Kawasaki et al. designed a random seven-amino acid 
(XX–P–XXXX) peptide library on the T7 phage based 
on the LPFFD sequence, where P stands for proline and 
X represents any other amino acid. The RGPRGRV pep-
tide was identified, which demonstrated the strongest af-
finity for Aβ and inhibited Aβ oligomer formation [46]. 
In subsequent studies, random libraries containing 3- 
and 4-amino acid peptides were created and evaluated to 
assess the effect of peptide length on inhibiting soluble 
oligomer formation. Results showed that 3-amino acid 
peptides, due to their smaller size, were not significantly 
effective in inhibiting oligomer formation, whereas a 
4-amino acid peptide with the sequence RFRK, similar 
to the seven-amino acid RGPRGRV peptide, inhibited 
soluble oligomer formation [50]. 
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Aβ-inhibiting Peptides in Clinical Trials

In recent years, extensive research has been conducted 
on Aβ-inhibiting peptides in cellular and animal mod-
els aimed at developing novel therapeutic compounds 
to prevent Aβ aggregation. While these peptides have 
shown promising results in some studies, only a few 
have progressed to clinical trials. One such peptide, PPI-
1019, commercially known as Apan, is an N-methylated 
peptide derived from the D-enantiomer of Cholyl-LVF-
FA-NH2, designed to inhibit Aβ aggregation and toxicity. 
This peptide was optimized through structural modifi-
cations, including the replacement of the cholyl group 
with a methyl group and the substitution of the terminal 
D-alanine with D-leucine. PPI-1019 successfully com-
pleted phase I and phase II clinical trials in patients with 
mild to moderate AD, demonstrating safety, good toler-
ability, and the ability to cross the BBB (NCT00100282, 
NCT00100334). Although an increase in Aβ1-40 levels 
in cerebrospinal fluid was observed following adminis-
tration, which may indicate enhanced clearance of Aβ 
from the brain, further clinical trials are needed to con-
firm its efficacy and evaluate long-term effects [31]. 

Currently, the peptide PRI-002 (also known as RD2), 
which is specifically being studied for its efficacy and 
impact on AD symptoms in patients with varying degrees 
of severity, is in Phase II clinical trials (NCT04711486). 
Initial results from this study are expected to provide 
valuable insights into the clinical effects and safety of 
this peptide and contribute to clarifying future prospects 
for the use of Aβ-inhibiting peptides in AD treatment. 
Other Aβ-inhibiting peptides, such as D3 [67], D-4F 
[115], TAT-RI-OR2 [116], and RI-OR2 [90], have shown 

significant efficacy in preclinical trials but have not yet 
advanced to clinical stages. 

Conclusion

Peptide-based inhibitors represent a promising thera-
peutic strategy for AD, particularly due to their ability 
to target Aβ peptides, a key factor in the pathogenesis 
of AD. The specificity of these peptides for Aβ allows 
them to inhibit its aggregation into toxic oligomers and 
fibrils, which are directly linked to neurodegeneration. 
This review underscores the progress in the develop-
ment of Aβ-inhibiting peptides, particularly those de-
signed from the Aβ sequence itself, as well as those 
discovered through phage display and mirror-image 
phage display technologies. These peptides offer advan-
tages such as high binding affinity, reduced neurotoxicity 
and the potential to improve brain penetration. Despite 
these advances, significant challenges remain. The rapid 
degradation of peptides by proteases, poor bioavailabil-
ity, and difficulties crossing the BBB have limited their 
clinical application. Additionally, the tendency of these 
peptides to self-aggregate further reduces their therapeu-
tic efficacy. However, innovative modifications such as 
the use of D-amino acids, cyclization and retro-inverso 
designs have improved peptide stability and therapeutic 
efficacy. These modifications enhance the pharmacoki-
netic profiles of peptides, making them more resistant to 
enzymatic degradation and improving their capacity to 
reach brain tissues. To develop more effective treatments, 
further research must focus on optimizing peptide design 
and understanding their molecular interactions with Aβ 
and other cellular components. Enhancing brain perme-
ability and reducing self-aggregation are key fields for 
improvement. Combining rational design with advanced 

Figure 1. The schematic represents the phase display and the mirror image phage display
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delivery systems may enhance the chances of peptides 
advancing through clinical trials and contributing signifi-
cantly to AD treatment. By addressing these challenges, 
we can unlock the full therapeutic potential of Aβ inhibi-
tory peptides, offering hope for disease-modifying thera-
pies in the future.
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