Volume 5, Issue 1 (Feb 2017)                   Res Mol Med (RMM) 2017, 5(1): 17-26 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nosrati M, Mohabatkar H, Behbahani M. A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV): An Immunoinformatics Approach. Res Mol Med (RMM) 2017; 5 (1) :17-26
URL: http://rmm.mazums.ac.ir/article-1-223-en.html
1- Departament of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
2- Departament of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran , H.MOHABATKAR@AST.UI.AC.IR
Abstract:   (6443 Views)

Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV.

Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric peptide as a novel epitope based vaccine for cross-protection against the virus. For this, one B and T-cell epitope from both E1 and E2 which was predicted by EPMLR and Propred-1 server and had the highest score and antigenicity in VaxiJen 2.0 and PAP servers were selected for construction of chimeric protein as a multi-epitope vaccine.

Results: The results of this study showed that the chimeric peptide had high antigenicity score and stability.Results also showed that most epitopes of E1 were located in two spectra consist of (45-65,88-107 and 148-182) while the results about B-cell epitopes of E2 showed that this protein had much less epitope than E1. The most epitope predicted for E2 were located in (12-24 and 35-54) spectra

Conclusion:  In conclusion, epitope based vaccine which was designed by immunoinformatics methods could be considered as a novel and effective vaccine for cross-protection against HCV infection.

Full-Text [PDF 594 kb]   (3236 Downloads)    
Type of Study: Research | Subject: Immunology
Published: 2017/04/30

References
1. Keyvani H, Fazlalipour M, Monavari SHR, Mollaie HR. Hepatitis C virus-proteins, diagnosis, treatment and new approaches for vaccine development. Asian Pac J Cancer Prev. 2012; 13(12):5917-35. PMID: 23464383 [DOI:10.7314/APJCP.2012.13.12.5917]
2. Alavi SM, Hajiani E. Hepatitis C infection: a review on epidemiology and management of occupational exposure in health care workers for general physicians working in Iranian health network setting. Jundishapur J Microbiol. 2011; 4(1):1-9.
3. Kwon Y-C, Ray RB, Ray R. Hepatitis C virus infection: establishment of chronicity and liver disease progression. EXCLI J. 2014; 13:977. PMID: 26417315
4. Alter MJ. Epidemiology of hepatitis C. Hepatology. 1997; 26(S3): 62S-65S. PMID: 9305666 [DOI:10.1002/hep.510260711]
5. Suzuki T, Ishii K, Aizaki H, Wakita T. Hepatitis C viral life cycle. Adv Drug Deliv Rev. 2007; 59(12):1200-12. PMID: 17825945 [DOI:10.1016/j.addr.2007.04.014]
6. Kallerup, Rie S., and Camilla Foged. "Classification of vaccines." Subunit vaccine delivery. Springer New York, 2015. P 15-29.
7. Vieyres G, Dubuisson J, Pietschmann T. Incorporation of hepatitis C virus E1 and E2 glycoproteins: the keystones on a peculiar virion. Viruses. 2014; 6(3):1149-87. PMID: 24618856 [DOI:10.3390/v6031149]
8. Freedman H, Logan MR, Law JLM, Houghton M. Structure and Function of the Hepatitis C Virus Envelope Glycoproteins E1 and E2: Antiviral and Vaccine Targets. ACS Infect Dis. 2016; 2(11):749-62. PMID: 27933781 [DOI:10.1021/acsinfecdis.6b00110]
9. Chevaliez S, Pawlotsky JM. Editors. In: Tan SL, editor. Source Hepatitis C Viruses: Genomes and Molecular Biology. Norfolk (UK): Horizon Bioscience; 2006. Chapter 1. PMID: 21250393
10. Drummer HE, Maerz A, Poumbourios P. Cell surface expression of functional hepatitis C virus E1 and E2 glycoproteins. FEBS Lett. 2003; 546(2-3):385-90. PMID: 12832074 [DOI:10.1016/S0014-5793(03)00635-5]
11. Lavie M, Goffard A, Dubuisson J. In: Tan SL, editor. Source Hepatitis C Viruses: Genomes and Molecular Biology. Norfolk (UK): Horizon Bioscience; 2006. Chapter 4. PMID: 21250391
12. Doytchinova IA, Flower DR. Quantitative approaches to computational vaccinology. Immunol Cell Biol. 2002; 80(3):270-9. PMID: 12067414 [DOI:10.1046/j.1440-1711.2002.01076.x]
13. Flower DR, McSparron H, Blythe MJ, Zygouri C, Taylor D, Guan P, et al., editors. Computational vaccinology: quantitative approaches. InNovartis Found Symp. 2004; 254: 102-20 [DOI:10.1002/0470090766.ch8]
14. Kumar A, Das S, Mullick R, Lahiri P, Tatineni R, Goswami D, et al. Immune responses against hepatitis C virus genotype 3a virus-like particles in mice: A novel VLP prime-adenovirus boost strategy. Vaccine. 2016; 34(8):1115-25. PMID: 26700891 [DOI:10.1016/j.vaccine.2015.11.061]
15. Zhu F, Chen T, Zhang Y, Sun H, Cao H, Lu J, et al. A Novel Adeno-Associated Virus–Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine. PloS one. 2015; 10(11):e0142349. PMID: 26556235 [DOI:10.1371/journal.pone.0142349]
16. Flower DR, Timmis J, editors. In silico immunology. New York: Springer; 2007. [DOI:10.1007/978-0-387-39241-7]
17. Flower DR. Immunoinformatics and the in silico prediction of immunogenicity: an introduction. Immunoinformatics: Predicting Immunogenicity In Silico. 2007:1-5.
18. Khan JM, Tong JC, Ranganathan S. Structural immunoinformatics: understanding MHC-peptide-TR binding. Bioinformatics. 2011; 27(8): 1192-3. PMID: 21349870 [DOI:10.1093/bioinformatics/btr104]
19. Tomar N, De RK. Immunoinformatics: a brief review. Methods Mol Biol. 2014; 1184:23-55. PMID: 25048118 [DOI:10.1007/978-1-4939-1115-8_3]
20. Saffari B, Mohabatkar H, Mohsenzadeh S. T and B-cell epitopes prediction of Iranian saffron (Crocus sativus) profilin by bioinformatics tools. Protein Pept Lett. 2008; 15(3):280-5. PMID: 18336358 [DOI:10.2174/092986608783744270]
21. Mohabatkar H, Mohammadzadegan R. Computational comparison of T-cell epitopes of gp120 of Iranian HIV-1 with different subtypes of the virus. Pak J Biol Sci. 2007; 10(23):4295-8. PMID: 19086590 [DOI:10.3923/pjbs.2007.4295.4298]
22. Poorinmohammad N, Mohabatkar H. Homology modeling and conformational epitope prediction of envelope protein of Alkhumra haemorrhagic fever virus. J Arthropod Borne Dis. 2015; 9(1):116-24. PMID: 26114149
23. De Groot AS, Berzofsky JA. From genome to vaccine—new immunoinformatics tools for vaccine design. Methods. 2004; 34(4):425-8. PMID: 15542367 [DOI:10.1016/j.ymeth.2004.06.004]
24. Tomar N, De RK. Immunoinformatics: an integrated scenario. Immunology. 2010; 131(2):153-68. PMID: 20722763 [DOI:10.1111/j.1365-2567.2010.03330.x]
25. Nazarian S, Gargari SLM, Rasooli I, Amani J, Bagheri S, Alerasool M. An in silico chimeric multi subunit vaccine targeting virulence factors of enterotoxigenic Escherichia coli (ETEC) with its bacterial inbuilt adjuvant. J Microbiol Methods. 2012; 90(1):36-45. PMID: 22525194 [DOI:10.1016/j.mimet.2012.04.001]
26. Hasan MA, Hossain M, Alam J. A computational assay to design an epitope-based Peptide vaccine against Saint Louis encephalitis virus. Bioinform Biol Insights. 2013; 7:347-55. PMID: 24324329 [DOI:10.4137/BBI.S13402]
27. Farhadi T, Karimi Z, Ghasemi Y, Nezafat N, Hemmati S, Erfani N. Production of a novel multi-epitope vaccine based on outer membrane proteins of Klebsiella pneumoniae. Trends Pharmaceutical Sci. 2015; 1(3):167-72.
28. Badawi MM, SalahEldin MA, Suliman MM, AbduRahim SA, elghafoor Mohammed AA, SidAhmed ASA, et al. In Silico Prediction of a Novel Universal Multi-epitope Peptide Vaccine in the Whole Spike Glycoprotein of MERS CoV. Am J Microbiol Res. 2016; 4(4):101-21.
29. Huang W-L, Tsai M-J, Hsu K-T, Wang J-R, Chen Y-H, Ho S-Y. Prediction of linear B-cell epitopes of hepatitis C virus for vaccine development. BMC Med Genomics. 2015; 8 Suppl 4:S3. PMID: 26680271 [DOI:10.1186/1755-8794-8-S4-S3]
30. Ikram A, Anjum S, Tahir M. In silico identification and conservation analysis of B-cell and T-cell epitopes of hepatitis C virus 3a genotype enveloped glycoprotein 2 from Pakistan: A step towards heterologous vaccine design. Hepat Month. 2014; 14(6). PMID: 24976845
31. Idrees S, Ashfaq UA. Structural analysis and epitope prediction of HCV E1 protein isolated in Pakistan: an in-silico approach. Virol J. 2013; 10(1):1. PMID: 23575359 [DOI:10.1186/1743-422X-10-113]
32. Gededzha MP, Mphahlele MJ, Selabe SG. Prediction of T-cell epitopes of hepatitis C virus genotype 5a. Virol J. 2014; 11: 187. PMID: 25380768 [DOI:10.1186/1743-422X-11-187]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research in Molecular Medicine

Designed & Developed by : Yektaweb