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New Insights and Perspectives on Human Menstrual 
Blood-derived Stem Cells as a New Cell-based Delivery 
Technology in Regenerative Medicine

Background: Menstrual blood has been identified as an important source for the isolation of 
mesenchymal stem cells (MSCs). These stem cells can easily and non-invasively be harvested from 
menstrual blood during menstrual shedding. There has been extensive research on the differentiation 
potential of menstrual blood-derived stem cells (MenSCs) and their application in regenerative 
medicine and the treatment of diseases. 

Materials and Methods: The aim of this paper was to review the current and future application of 
MenSCs in the field of regenerative medicine and cell therapy based on an electronic search in various 
databases, like Scopus, PubMed, and Google Scholar for English-language studies. The application 
of MenSCs in regenerative medicine can be the window of hope for the treatment of various diseases 
and disabilities, such as female infertility, type 1 diabetes, myocardial infarction, wound healing, 
neurodegenerative diseases, and many other conditions that were thought to be incurable in the past.

Conclusion: Nowadays, the use of MenSC as a novel source of MSCs has garnered special interest 
among scientists due to two important factors: Non-invasive accessibility and the immunomodulatory 
potential of these cells, which have historically posed significant obstacles in the field of stem cell 
therapy. To date, there has been substantial research on these cells, and many studies are ongoing, as 
scientists seek to leverage their differentiation potential and optimize differentiation conditions and 
protocols for their application in regenerative medicine. 
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Introduction

ell transplantation therapy is one of the 
promising methods to cure a wide range 
of diseases. To date, scientists have found 
stem cells as an unlimited source for cell 
replacement therapies. Mesenchymal stro-

mal/ stem cells (MSCs), due to their multipotency and 
high proliferative rate, have become an excellent op-
tion for cell therapy and regenerative medicine. MSCs 
can be isolated from all adult tissues in the body [1] and 
they share several common characteristics, including (a) 
adherence to plastic, (b) expression of surface markers 
such as CD73, CD90, and CD105, while lacking he-
matopoietic surface markers including CD34, CD45, 
CD133, and human leukocyte antigen DR (HLA-DR), 
(c) the ability to differentiate into mesodermal lineage 
cells (osteoblasts, adipocytes, chondrocytes), and (d) 
low immunogenicity [2]. 

Among all the adult tissues that can be used for the 
isolation of MSCs, bone marrow (BM) [3], adipose tis-
sue [4], placenta [5], and umbilical cord blood [6] are 
used more frequently than other tissues. BM-MSCs are 
the most prevalent source for the isolation of MSCs, as 
they have a high proliferation capacity and can yield a 
large number of cells during the isolation process. How-
ever, the isolation of cells from the BM requires invasive 
methods and must be performed during a surgical opera-
tion. On the other hand, the number of MSCs and their 
differentiation capacity decline with the age of the do-
nor [7]. Adipose tissue is another source of AD-MSCs, 
which can be isolated during liposuction surgery; this 
method is less invasive than BM extraction, but both 
sources share MSC characteristics [8]. 

Since the most important issue in the use of MSCs is 
the invasiveness of isolation methods, scientists have 
been searching for a suitable alternative that is non-in-
vasive, ethically uncontroversial, and low-cost. For the 
first time in 2007, Meng et al. reported menstrual blood-
derived stem cells (MenSCs) as a novel source of adult 
stem cells [9]. MenSCs are located in the endometrium 
and can be obtained during menstrual shedding in every 
menstrual cycle; therefore, their isolation is completely 
non-invasive. MenSCs are highly proliferative, possess 
stable chromosomal karyotypes [10], and are multipo-
tent cells that can differentiate into all three germ layer 
cell types [9], making them significant for regenerative 
medicine. In this review, we aim to investigate the differ-
entiation and regenerative potential of menstrual blood-
derived MSCs for cell-based therapy.

Endometrial stem cells

During every menstrual cycle, the endometrium thick-
ens to about 7 mm to prepare for the nesting and devel-
opment of a fetus. If pregnancy does not occur, this en-
dometrial layer begins to shed through menstrual blood, 
and the thickness of the endometrium starts to increase 
again for the next month. In this process, endometrial 
stem cells play a key role in the regeneration of the en-
dometrium [11]. 

Over 30 years ago, the presence of stem cells in the 
endometrium was proposed [12]. For the first time, clon-
ing of human endometrial stem cells confirmed the ex-
istence of endometrial epithelial progenitor cells. It was 
also shown that endometrial stem cells (EnSCS) are lo-
cated in the superficial layers accessible by endometrium 
biopsies, and some researchers have reported the isola-
tion of EnSCs from menstrual blood or endometrium bi-
opsies [10]. EnSCs reside in the basalis and functionalis 
layers of the endometrium, and while these cells leave 
the body through menstrual blood, they are referred to as 
MenSCs. Like other types of MSCs from other sources, 
MenSCs exhibit characteristics such as self-renewal, clo-
nogenicity, and multipotency. Furthermore, they demon-
strate higher extraction efficiency and longer passaging 
capacity with shorter doubling times [13].

Another advantage of MenSCs is their isolation pro-
cedure. The most convenient method for collecting the 
MenSC, which involves no complications or harm to the 
donors, is to collect the deciduous endometrium from 
menstrual blood using a menstrual cup during the first 
several days of menses [13, 14]. Additionally, there are 
some other methods for obtaining these cells, including 
diagnostic curettage, first-trimester deciduas [15], men-
strual cup [14], and hysteroscopy [13]. The isolation and 
culture methods for MenSCs are listed in Table 1, and 
the isolation of MenSCs from the endometrium is illus-
trated in Figure 1. 

Markers and identification of MenSCs

Investigations by various research groups have re-
ported that MenSCs are positive for the expression of 
CD44, CD29, CD9, CD73, CD90, CD105, OCT-4, 
CD166, and MHCI CXCR-4. Among these markers, 
CD29, CD73, CD90, and CD105 are common markers 
of MSCs that can also be expressed by BM-MSCs [16].
However, the expression of hematopoietic markers, such 
as CD34, CD45, CD133, and HLA-DR, is negative in 
MenSCs [16]. Another study highlighted the negative 
expression of hematopoietic lineage markers such as 
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CD34 and monocyte-macrophage antigens like CD14 (a 
marker for macrophages and dendritic cells [DCs]) and 
CD45 (leukocyte common antigen). The low immuno-
genicity, which is one of the advantages of MenSCs in 
regenerative medicine, is due to the very low expression 
of HLA-ABC and HLA-DR [17]. Verdi et al. used the 
co-expression of CD140b and CD146 for the isolation of 
MenSCs [18]. Another study reported that MenSCs can 
be directly isolated from the endometrial shedding mix-
ture using CD146, PDGFRβ, and SUSD2 markers [19].

MenSCs also exhibit telomerase activity, accompanied 
by the expression of human telomerase reverse tran-
scriptase (hTERT) [20]. Furthermore, MenSCs express 
embryonic stem cell markers such as OCT-4. In some 
studies, scientists observed that MenSCs expressed em-
bryonic and intracellular multipotent markers, includ-
ing the C-Kit proto-oncogene (c-kit)/CD17, OCT-4, 
and SSEA4, while these markers were not expressed in 
MSCs from other sources [21]. 

Differentiation potential of MenSCs

MenSCs demonstrate the potential to differentiate into 
three lineages: Adipogenic, osteogenic, and chondrogen-
ic. They can be differentiated into ectodermal and meso-
dermal cell lineages, specifically into bone, fat, cartilage, 
nerve, and endothelial cells in vitro [22]. 

MenSCs express embryonic stem cell markers, like 
OCT-4, c-kit, and SSEA-4, suggesting that MenSCs are 
more primitive and have a stronger multi-directional dif-
ferentiation capacity than MSCs from other sources. In a 
study examining the effects of human MenSCs (hMen-
SCs) on bleomycin-induced pulmonary fibrosis, Wu et 
al. reported that MenSCs exhibited a spindle and fibro-
blast-like morphology and could be successfully differ-
entiated into osteogenic, chondrogenic, and adipogenic 
cells [23]. A comparative study of MenSCs from healthy 
volunteers and patients with fertility disorders reported 
that MenSCs from both groups were able to differentiate 
into chondrogenic and osteogenic lineages, but they had 
a low potential for adipogenic differentiation [24]. 

Considering all these studies, there remains a contradiction 
regarding the differentiation potential of MenSCs. A study by 
Uzieliene et al. demonstrates that MenSCs and BM-MSCs 
both can differentiate into adipogenic and osteogenic lineage 
cells. However, BM-MSCs exhibit a stronger adipogenic dif-
ferentiation capacity [25]. Darzi et al. reported that compared 
to BM-MSCs, MenSCs have a lower capacity to differentiate 
toward osteoblast lineage, but using human platelet releas-
ate instead of FBS in the culture medium can compensate 
for this limitation and increase the osteogenic differentiation 
capacity of MenSCs [26]. MenSCs can also differentiate into 
hepatocytes, but this differentiation relies on the concentra-
tion of hepatocyte growth factor, oncostatin M, and the elimi-
nation of serum from the induction medium [27]. 

MSCs as a New Cell-based Delivery Technology in Regenerative Medicine
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Figure 1. Isolation of MenSCs from the endometrium
Note: Stem cells are located in the basalis layer of the endometrium, and during menstrual shedding, these stem cells leave the 
body and are thereafter referred to as menstrual blood-derived stem cells. MenSCs are multipotent and can differentiate into 
three lineages: Adipogenic, osteogenic, and chondrogenic. 
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Therapeutic applications of MenSCs in various 
diseases and wound healing

hMenSCs possess a broad range of properties, such as 
pluripotent or multipotent differentiation, strong para-
crine activity, and immunomodulatory capacity, which 
make them promising candidates for regenerative ther-
apy [28]. These unique properties have inspired exten-
sive research into their potential therapeutic applications 
across diverse diseases. In the following section, we 
summarize current evidence on the use of MenSCs in 
various diseases and wound healing, highlighting both in 
vitro and in vivo studies that support their regenerative 
and reparative capabilities. 

Asherman’s syndrome (AS)

The major cause of uterine infertility could be a thin 
endometrium, which is often found in women with AS 
or intrauterine adhesion (IUA) [29]. In this case, the 
basal layer of the endometrium is destroyed, and the 
functional layer fails to respond to hormonal stimulation. 
There are many treatment options for AS or IUA, includ-
ing hysteroscopic adhesiolysis, oral hormones, and bio-
logical barriers; however, despite their beneficial effects, 
each of these methods has limitations [30]. Stem cell 
therapy is one of the promising therapies for the future 
treatment of AS. In a study involving the transplantation 
of spheroids of human endometrial stem cells from men-
strual blood into rats with AS, Tan et al. reported that 
MenSCs could increase the synthesis of anti-inflamma-
tory and angiogenic factors. Therefore, they could pre-
serve all properties in a monolayer. Autologous MenSC 
transplantation was shown to increase the endometrium 
thickness in 7 women with AS according to a non-con-
trolled prospective clinical study. Of the seven patients, 
five achieved an endometrial thickness of 7 mm, which 
is the optimum thickness for embryo implantation. Four 
of the patients underwent frozen embryo transfer (FET), 
and after the second MenSC transplantation, one of them 
became pregnant, with none of the seven patients expe-
riencing transplantation complications. Therefore, it can 
be concluded that autologous MenSC transplantation is 
an alternative treatment for AS [31]. The results of stud-
ies have shown that MenSCs are a safe and promising 
source of cells that could be used for IUA and other types 
of endometrial damage.

COVID-19

In December 2019, coronavirus disease 2019 (COV-
ID-19) spread around the world and caused a coronavirus 
pandemic. Major lung-associated diseases in COVID-19 

patients are acute respiratory distress syndrome (ARDS) 
and respiratory failure [32]. Preclinical studies have 
proven that one of the promising therapeutic strategies 
for refractory and non-life-threatening pulmonary ill-
ness is cell therapy, and MSCs appear to have beneficial 
effects for COVID-19 [33]. Furthermore, by secreting 
trophic factors, cytokines, and chemokines, MSCs can 
exhibit immunomodulatory and tissue-repairing abilities 
[34]. Chen et al., for the first time, used MenSCs as a 
treatment for COVID-19. Due to their immunomodula-
tory properties, MenSCs could reduce the inflammatory 
effects associated with cytokine storms, thereby improv-
ing patients’ conditions [35]. 

Myocardial infarction (MI)

MI is a type of coronary artery disease in which exces-
sive ischemic conditions lead to the apoptosis of cardio-
myocytes. Despite developments in medical and surgical 
strategies for treating cardiac disease, it remains the ma-
jor cause of morbidity and mortality worldwide. Many 
clinical and preclinical studies have proposed that stem 
cell therapy can restore cardiac function and regenerate 
damaged cardiac tissue. hMenSCs, due to their paracrine 
effect, immunomodulation, and transdifferentiation, can 
promote both these conditions [36]. MenSCs can dif-
ferentiate into cardiomyocytes both in vivo and in vitro 
[14]. After testing the use of hMenSCs in MI in rats, it 
was shown that the in vivo transplantation of MenSCs 
could lead to greater improvements in cardiac function 
compared to BM-MSCs. In a study using the nude rat 
model with MI, the in vivo transplantation of MenSCs 
could lead to greater improvements in cardiac function 
compared to BM-MSCs [37]. In a study by Jiang et al. 
on an immunological MI rat model, it was observed that 
MenSCs could significantly reduce apoptosis, promote 
cell proliferation, and recruit c-kit+ cells [38].

Liver fibrosis

The last stage of most chronic liver diseases leads to 
liver fibrosis, which causes a huge burden with high 
rates of mortality and morbidity worldwide. Every year, 
liver diseases are responsible for 3.5% of all deaths [39]. 
The most effective method for fibrotic liver treatment 
is orthotopic liver transplantation; however, despite its 
efficiency, it usually faces some limitations, like organ 
donor shortage, surgical complications, and the need for 
lifelong immunosuppression. To overcome these limita-
tions, new approaches for the treatment of liver fibrosis 
have been suggested based on MSC therapy [40]. For the 
first time, a study using a carbon tetrachloride-induced 
mouse model of liver fibrosis demonstrated that the 
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transplantation of MenSCs had positive effects on liver 
function, decreased collagen deposition, and inhibited 
activated stellate cells up to two weeks after the trans-
plantation of MenSCs [41]. 

Type 1 diabetes mellitus (T1DM)

T1DM is an autoimmune condition caused by an at-
tack of insulin-producing β cells by the immune system, 
leading to their destruction. In this case, β cells lose their 
ability to respond to blood glucose, resulting in hyper-
glycemia. The transplantation of the whole pancreas or 
islets is the most effective treatment for T1DM [42, 43]; 
however, it is often limited by donor shortages, and pa-
tients must take immunosuppressive drugs for the rest of 
their lives. To address the issue of donor shortages, sci-
entists have suggested using an unlimited source of cells 
and differentiating them into mature insulin-producing β 
cells [44, 45]. 

MenSCs can increase the expression of neurogenin-3 
(NGN3), forkhead box protein A2 (FOXA2), pancreatic 
duodenal homeobox-1 (PDX1), NK homeobox factor 
6.1 (NKX6.1), and paired-box (PAX) genes after trans-
plantation of MenSCs in T1DM mice. Therefore, they 

can promote β-cell differentiation and increase the num-
ber [46]. In vivo models of T1DM have shown that hu-
man menstrual blood progenitor cells (MBPCs) display 
remarkable potential to enhance pancreatic function 
through indirect regenerative pathways. MBPC admin-
istration can ameliorate hyperglycemia, enhance meta-
bolic properties, and increase insulin generation, while 
also promoting recovery of islet structure. Interestingly, 
rather than directly differentiating into beta-like cells, 
MBPCs appear to home to injured pancreatic tissue and 
stimulate resident endocrine progenitors, as demonstrat-
ed by increased NGN3 expression across islet, ductal, 
and exocrine compartments. This activation is accompa-
nied by the upregulation of genes involved in embryonic 
β-cell development, suggesting that MBPCs exert their 
therapeutic effects primarily via paracrine signaling and 
modulation of the local microenvironment. Such find-
ings position MBPCs as a promising, noninvasive can-
didate for future regenerative strategies in T1DM [47]. 
Furthermore, a study of diabetic animals showed that 
treatment with repeated doses of hMenSC-derived exo-
somes could increase β-cell mass and insulin production 
in a diabetic animal model [48]. 

Table 1. Isolation and culture methods of MenSCs

Isolation Method MenSC Extraction Protocol

Endometrial biopsy

Novak curettes or a pipette device were used to collect samples on days 19-24 of the menstrual cycle from 
females with fertility problems. Full-thickness samples were washed in Hanks’ buffer (penicillin, streptomycin, 

and amphotericin B) after isolation. Collagenase I was used for tissue digestion. Stem cells were separated from 
RBCs using Ficoll and centrifugation for 20 minutes, and then they were cultured in Dulbecco's modified eagle 

medium (DMEM) with 10% FBS in tissue culture bottles [11].

Hysteroscopy

Endometrial specimens were isolated in sizes of 1x1x1 cm³ and transferred to Hanks’ buffer containing 1% 
streptomycin, 1% penicillin, 1 µg/mL amphotericin B, and 5% FBS at 5 °C.

After that, pre-warmed Hank’s media were used to wash samples, and then they were incubated with 
collagenase I at 37 °C for 30-45 minutes for tissue digestion. After centrifugation at 300 x g for 5 min, the passed 
cells were gently added to Ficoll and centrifuged again at 400 x g for 20 min to separate the stem cells. The RBC 

sediment was disposed of, and the cellular layer was transferred to the culture medium [15].

Injection syringe

A 3 mL menstrual blood sample was collected on day 2 of menses from healthy donors. The menstrual blood was 
transferred to Ficoll and then fractionated using density gradient centrifugation. Mononuclear cells located in the 
central layer were separated and cultured in a 25 cm2 tissue culture bottle with DMEM, 1% streptomycin, and 1% 

penicillin [17]. 

First-trimester decidual

Young healthy women undergoing elective vaginal surgical termination of early pregnancy were chosen for 
sample collection. Sterile PBS (pH: 7.4) was used for transferring the samples, which were then washed three 

times in a large volume of DMEM with 100 IU/mL P/S. Decidual tissue was isolated from the trophoblast 
and ground into 1-2 mm3 pieces. Collagenase was then added to the sample, and they were incubated for 

tissue digestion. DMEM supplemented with FBS was also used for enzyme deactivation, and nylon mesh was 
employed for the filtration of samples. The mixture was centrifuged at 200 x g for 10 minutes, and the pellet was 

resuspended and cultured [18]. 

Menstrual cup

Menstrual blood samples were collected from healthy females during the first few days of menses using a 
menstrual cup. The samples were transferred into an equal volume of PBS containing 100 U/mL penicillin, 100 

U/mL streptomycin, 0.25% mg/mL amphotericin B, and 2 mM EDTA. The sample was added gently to Ficoll 
and then centrifuged. After that, karyocytes and deciduous endometrial cells suspended in the Buffy coat were 

isolated and transferred to a Falcon tube. Following another centrifugation, the pellet was resuspended and 
cultured in DMEM medium [16]. 

MSCs as a New Cell-based Delivery Technology in Regenerative Medicine
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Wound healing

Regarding the multipotency and self-renewal ability 
of stem cells, as well as their capacity to secrete pro-
regenerative cytokines, they could be suitable options 
for tissue regeneration. Wound healing refers to the 
process by which skin or other tissues regenerate and 
repair themselves after injury [49, 50]. The interaction 
of different cells, including inflammatory cells, kerati-
nocytes, fibroblasts, and endothelial cells at the site of 
injury, plays a crucial role in cutaneous wound healing. 
MSCs, due to their ability to promote angiogenesis and 
decrement scarring, can reduce inflammation and facili-
tate wound healing [51]. Compared to other sources, like 
BM-MSCs, MenSCs have a higher potential for migra-
tion and angiogenesis; thus, MenSCs are an appropriate 
candidate for wound healing [52]. These cells can allevi-
ate the wound healing process by releasing some cyto-
kines, including platelet-derived growth factor (PDGF), 
elastin (Eln), angiopoietin (ANGPT), matrix metallo-
proteinases 3 (MMPs3), and matrix metalloproteinases 
10 (MMPs10) [53]. Furthermore, MenSCs can release 
exosomes that have a beneficial effect on non-healing 
wounds in diabetic mice. These exosomes upregulate 
VEGF, thereby enhancing neo-angiogenesis [54]. 

Female infertility

Infertility is a condition in which couples cannot 
achieve pregnancy after one year or more. The number 
of people suffering from infertility exceeds 186 million 
around the world [55]. Several in vivo and clinical stud-
ies have further illustrated the regenerative properties of 
MenSCs in female infertility, such as premature ovarian 
failure and thin endometrium [56]. MenSCs can promote 
endometrial repair by enhancing angiogenesis, modulat-
ing inflammatory responses, and secreting paracrine 
factors that stimulate proliferation and differentiation of 
endometrial epithelial cells. Transplantation of MenSCs 
into animal models of infertility has resulted in improved 
endometrial thickness, increased vascular density, and 
restoration of normal estrous cycles. Early-phase clini-
cal trial results have also displayed that intrauterine in-
fusion of MenSCs may enhance endometrial receptiv-
ity and pregnancy outcomes in patients with refractory 
infertility. These reports suggest that cell-based therapy 
could represent a novel, minimally invasive approach for 
restoring reproductive function and improving fertility 
in women. Several clinical studies have investigated the 
therapeutic potential of MSCs for treating female infer-
tility [57]. Zheng et al. claimed that MenSCs have the 
potential for the regeneration of the reproductive system 
for the first time [58]. After directing MenSCs into epi-

thelial differentiation lineage, it was observed that the 
expression of decidualization-related genes (including 
PRL, ESR, IGFBP, and FOXO1) and angiogenesis-relat-
ed genes (HIF7, VEGFR2, and VEGFR3) increased. Af-
ter analyzing the characteristics and potential of MenSC 
isolated from both healthy donors and women with fer-
tility issues, it was demonstrated that only some epigene-
tic and stemness gene expressions were lower in women 
with infertility, while the expression of other genes was 
similar in both groups [24].

Duchenne muscular dystrophy (DMD)

In muscle tissue, the interaction of cells is facilitated 
by a protein named dystrophin. DMD is a genetic disor-
der in which dystrophin is changed, leading to progres-
sive muscle degeneration and weakness. Scientists have 
been investigating the application of stem cell therapy 
for the treatment of DMD. MenSCs can increase the ex-
pression of the muscle-like proteins in immunodeficient 
DMD model mice, thereby enhancing muscle regenera-
tion and repairing skeletal muscle. Furthermore, after 
co-culturing with mouse myoblast cells, MenSCs were 
able to differentiate into myoblast/muscle cells, which 
can express anti-atrophy muscle proteins [59]. 

Neurodegenerative disease

MenSCs, being a rich source of stem cells that are 
easily accessible and have the potential to differentiate 
into neurons, can be an ideal tool for the treatment of 
neurodegenerative disorders [60]. The administration of 
MenSCs has a therapeutic effect on tissue regeneration 
and the function of the central nervous system, as well as 
in the heart and ischemic limbs [61]. Under glucose de-
privation conditions, MenSCs can provide protection to 
primary neural cultures. MenSC media can secrete fac-
tors that have neuroprotective effects on neurons, such 
as vascular endothelial growth factor (VEGF), brain-
derived growth factor (BDNF), and neurotrophin-3 (NT-
3) [62]. In a study on Alzheimer’s disease, Zhao et al. 
examined the effect of MenSC treatment after intracere-
bral transplantation in APP/PS1 transgenic mice. They 
observed that amyloid-beta (Aβ) deposition and tau hy-
perphosphorylation were reduced, and cognitive decline 
improved. Additionally, the treatment modulated mi-
croglial activation and restored Aβ clearance in the trans-
genic mouse model [63]. In a clinical study of multiple 
sclerosis, no adverse effects or immune rejection were 
noted during a one-year follow-up after the intravenous 
and intrathecal administration of MenSCs, demonstrat-
ing the feasibility of clinical use [64]. 
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The multilineage differentiation potential of MenSCs is 
illustrated in Figure 2. 

Immune modulatory

In 2002, the first report on the immunomodulatory ef-
fect of MSCs was published [65]. MSCs have the po-
tential to modulate the immune system; therefore, they 
can be used as a promising tool for the treatment of 
inflammation. As mentioned above in connection with 
the immune-modulatory properties of MenSCs, their 
interaction with different immune cells includes hin-
dering the proliferation of B cells, T cells, natural killer 
(NK) cells, and DCs, while promoting regulatory T cells 
(Treg). MenSCs can modulate both innate and adaptive 
immune responses [66]. The immunomodulatory effects 
of MenSCs on the immune cells are illustrated in Figure 
3. MenSCs play an important mediating role in immuno-
modulation by inhibiting the generation and maturation 
of DCs and by secreting IL-6 and IL-10 [67]. Scientists 
have been investigating the effect of MenSCs on T cells 
in mixed lymphocyte reactions involving a mixture of 
MenSCs and allogenic human peripheral blood mono-
nuclear cells (PBMNCs). It was observed that while the 
production of interleukin 4 (IL-4) increased, cellular pro-
liferation, as well as interferon gamma (INFγ) and tumor 
necrosis factor alpha (TNF-α) levels, were suppressed, 

indicating that MenSCs exert this effect in a dose-depen-
dent manner [68].

MenSCs also have a dose-dependent effect on cytokine 
levels, which reduces anti-inflammatory IL-4+, IL-10+, 
and CD4

+ T cells at a low MenSC: PBMC ratio compared 
to BM-MSCs [69]. This may be a result of a higher num-
ber of HLA-DR molecules on the MenSC surface and 
a lower number of IFNγ receptors. Additionally, com-
pared to BM-MSCs, MenSCs exhibit less production 
of indoleamine (IDO), cyclooxygenase-2 (COX2), and 
activin A [69]. Intravenous administration of MBPCs re-
sulted in the restoration of islet structure and an increase 
in the number of B cells in the T1DM mice model [47]. 
Several studies have demonstrated the effect of MenSCs 
in different models of inflammation, including experi-
mental colitis [70], lipopolysaccharide (LPS)-induced 
injury [71], and polymicrobial sepsis. The survival of 
mice undergoing experimental colitis improved after 
treatment with MenSC. There was also an increase in the 
production of regulatory B cells (Breg) and the expres-
sion of IL-10 and CXC chemokine receptor-4 (CXCR4) 
by MenSCs as an immune-modulatory agent, resulting 
in fewer changes in colon tissue [72]. 

MenSCs can exert an immune-modulatory effect 
through the suppression of lymphocytes and the pro-

Figure 2. Multilineage differentiation potential of MenSCs
Note: MenSCs can be directed into different cell lineages, including adipocytes, myocytes, β cells, and neurocytes in vitro, and 
as such, they could be used for the treatment of a wide range of diseases. MenSCs can also enhance or inhibit some gene expres-
sion or release exosomes that may promote disease conditions. 
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liferation and secretion of inflammatory cytokines, like 
INFγ and TNFα. They also suppress neuroinflammation 
by decreasing the recruitment of Th1 and Th17 cells to 
the nervous system, upregulating anti-inflammatory cy-
tokines, like IL-10 and IL-27, and downregulating pro-
inflammatory cytokines, such as IL-1β [36]. Lv et al. 
indicated that endometrial regenerative cells (ERC) can 
have anti-inflammatory and immunosuppressive effects, 
thus potentially ameliorating colitis in mouse models. In 
this study, treatment of DSS (dextran-sulfate-sodium)-
induced mice with ERCs resulted in a decrease in the 
disease activity index (DAI) and in levels of intracolonic 
IL-2 and TNFα. Conversely, the expressions of IL-10 
and IL-4 increased. In contrast, the untreated group of 
DSS-induced mice exhibited severe colitis, character-
ized by body weight loss, mucosal ulceration, bloody 
stool, and colon shortening. Also, it was observed that 
ERC-treated mice had decreased MHC II expression, 
higher levels of CD4+CD25+ and FOXP3+ T-reg cells, 
and fewer CD3+CD25+ active T cells [73]. ERC can 
also decrease the amount of IgG deposition in the colon 
and the number of immature plasma cells in the spleen. 
Therefore, they can improve the survival of colitis mice. 
It can be concluded that ERC increases B-reg and IL-10 
production, resulting in therapeutic effects on colitis in 
mice [70]. 

In a study on LPS-induced lung injury, the levels of 
inflammatory cells and IL-1β expression significantly 
decreased after the transplantation of MenSCs. It was as-

sumed that MenSCs hinder the T cell function through 
cell contact, thereby inhibiting inflammation in the in-
jured lung [17]. There has been some research on the 
combination of MenSCs with agents, like antibiotics, 
and evaluating their efficiency in the treatment of sepsis. 
Alcayaga-Miranda et al. investigated the direct and indi-
rect effects of MenSCs on sepsis. In the direct method, 
they incubated a bacterial mixture with MSCs derived 
from BM and menstrual blood for 6 hours. Compared 
to the control group, both MSCs significantly inhibited 
bacterial growth. They also studied conditioned me-
dium (CM) to determine whether the anti-bacterial ef-
fects of MSCs are related to soluble factors. Compared 
to BM-MSCs, the non-stimulated CM of MenSCs had 
a stronger inhibition of bacterial growth. After 40 hours 
post-CLP, the serum levels of TNFα, IL-6, and MCP-1 
decreased in the group treated with MenSCs, both with 
and without antibiotics, compared to the saline group. 
The group treated with antibiotics and MenSCs also 
showed decreased levels compared to untreated mice. In 
conclusion, they observed that only the MenSC-treated 
group, regardless of antibiotic treatment, could reduce 
pro-inflammatory and inflammatory cytokines. Over-
all, it can be emphasized that MenSCs were effective in 
rescuing mice from uncontrolled systemic inflammatory 
response following CLP-induced sepsis [74]. 

Jin et al. demonstrated that pretreatment of ERC with 
stromal cell-derived factor-1 (SDF-1) plays a crucial role 
in alleviating sepsis-related models. They reported that 

Figure 3. Immunomodulatory effects of MenSCs on immune cells
Note: MenSCs can suppress B cells, T cells, DCs, and NK cells, but they cause upregulation and proliferation of regulatory T 
cells (Tregs). MenSCs can also increase the anti-inflammatory cytokines, such as IL-6 and IL-10, while inhibiting pro-inflam-
matory cytokines, like TNF-α and INFγ.
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SDF-1-pretreated ERCs could significantly reduce pro-
inflammatory cytokines (TNFα, IL-1β) while increasing 
levels of the anti-inflammatory factors IL-4 and IL-10 
[71]. The immunosuppressive ability of BM-MSCs in-
creased after their pre-treatment with an anti-inflamma-
tory stimulus. IFN-γ-pretreated BM-MSCs can have an 
anti-proliferative effect on CD4

+ T cells; however, the 
pretreatment of INF-γ and INF-g with MenSCs dem-
onstrated a milder immunosuppressive response. Com-
pared to BM-MSCs, the in vitro effect of MenSCs on T 
cell proliferation is weaker, and it can be influenced by 
factors, such as cytokine milieu, T cell-stimulating fac-
tors, the MenSC/ T cell ratio, and the culture system [75]. 

NK cells play a substantial role in the innate immune 
system of the endometrium. Although it has been ac-
claimed by reported that MenSCs could induce the 
proliferation of NK cells, pretreatment of MenSCs with 
INFγ/IL-β has anti-proliferation potential through the 
mediation of the IL-6 and TGFβ pathways. MenSCs 
could impair the cytotoxicity of NK cells on K562 cells 
[76]. The concentration of MenSCs can have a signifi-
cant effect on immune system cells; for example, they 
can stimulate or inhibit the mixed lymphocyte reaction 
(MLR) and may also inhibit the complete and optimal 
maturation of monocyte-derived DCs in a dose-depen-
dent manner [67]. In the case of NK cells, this dose-de-
pendent effect remains, with MenSCs exhibiting maxi-
mum suppression at a ratio of 1:4. As the MenSC/NK 
cell ratio increases, NK cell proliferation decreases [76]. 

By affecting innate immune cells (human blood mono-
cyte-derived DCs (MoDCs)), NK cells, and tissue mac-
rophages) and the secretion of monocyte-to-DC differ-
entiation inhibitory factors (IL-6 and IL-10), MenSCs 
can affect the innate immune system. Uterine NK cells 
(uNK), as an important part of the endometrial innate 
immune system, play a crucial role in hindering allo-
rejection, which contributes to maintaining a successful 
pregnancy. Any dysfunction of uNK cells may result in 
the pathogenesis of recurrent pregnancy loss; therefore, 
the cytotoxic function of uNK cells must be tightly regu-
lated [77]. MenSCs, through the production of IL-6 and 
TGF-β, can have inhibitory effects on NK cell prolifera-
tion. MenSC treatment with INF-γ/IL-β can decrease the 
expression of granzyme A, granzyme B, and perforin, 
leading to a prevention of NK cell cytotoxicity [78]. 
In a model of allograft heart transplanted mice, it was 
observed that 24 hours after the injection of MenSCs, 
the ingraft deposition of donor-specific IgG and IgM 
antibodies was reduced, and donor-specific antibody-
secreting B cells also declined, resulting in an improve-
ment in graft survival in recipient mice [79]. Cabezas et 

al. examined the intravenous injection of MenSCs into 
a murine model of colitis. After 2-8 days, they observed 
that levels of IL-4 and IL-10 increased, while IL-2 and 
TNF levels decreased. Also, compared to the untreated 
control group, the MenSC-treated group exhibited high-
er expression levels of MHC II from splenic DCs [80]. 

Translational potential and clinical consider-
ations of MenSC-based therapies

Given their unique biological potentials, MenSCs are 
emerging as a promising cell type for the treatment of 
many human diseases, ranging from reproductive dis-
orders and cardiovascular diseases to autoimmune and 
inflammatory conditions. Early-phase clinical studies, 
particularly on AS, premature ovarian failure, and liver 
cirrhosis, have indicated encouraging safety profiles 
and preliminary efficacy, highlighting their potential for 
broader clinical use. However, the translation into rou-
tine clinical practice faces several challenges, including 
the need for standardized isolation and expansion pro-
tocols, large-scale good manufacturing practice (GMP)-
compliant production, and rigorous long-term safety 
evaluations. Potential risks, such as unwanted immune 
responses, ectopic tissue formation, and tumorigenic po-
tential—though currently considered low—must be sys-
tematically addressed through well-designed preclinical 
and clinical trials. Furthermore, regulatory hurdles, cost-
effectiveness analyses, and ethical considerations will 
play critical roles in shaping the future clinical landscape 
of MenSC therapies. By bridging current laboratory 
findings with clinically applicable protocols, MenSCs 
could become a versatile and minimally invasive plat-
form for regenerative therapy [81, 82].

Conclusion and Future Research

In conclusion, the application of stem cells in regenera-
tive medicine can be the window of hope for the treat-
ment of various diseases and disabilities, such as female 
infertility, type 1 diabetes, MI, wound healing, neuro-
degenerative diseases, and many other conditions that 
were once thought to be incurable. Nowadays, the use 
of MenSCs as a novel source of MSCs is gaining special 
interest among scientists due to two important factors: 
Non-invasive accessibility and the immunomodulatory 
potential of these cells, which have historically posed 
significant obstacles in the field of stem cell therapy. To 
date, there has been extensive research on these cells, 
and many studies are ongoing, as scientists seek to har-
ness their differentiation potential and optimize differ-
entiation conditions and protocols for their application 
in regenerative medicine. Future research on MenSCs 
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should focus on addressing the current gaps in clini-
cal trial evidence, particularly through well-designed, 
large-scale clinical trials to survey their long-term safety 
and efficacy. Advanced strategies, such as exosome ex-
traction from MenSCs, could enhance their therapeutic 
potential and enable targeted delivery in regenerative 
therapy. Moreover, comparative studies with other adult 
stem cell sources are needed to better define their unique 
advantages and limitations. 
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