Frequencies of two CYP2C19 Defective Alleles (CYP2C19*2, and *3) among Iranian Population in Mazandaran Province

Naghi Shahabi-Majd¹, Mohammad Bagher Hashemi-Sotech², Baharak Habashi¹, Mohammad Reza Shiran²*

¹Molecular and Cell Biology Research Centre Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
²Psychiatry and Behavioral Sciences Research Centre of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.

Abstract

Background: Cytochrome P450 2C19 (CYP2C19) is a polymorphically expressed enzyme that shows marked interindividual and interethnic variation. CYP2C19*2 and CYP2C19*3 are the most frequent identified defective alleles in Orientals and Caucasian poor metabolizers (PM). The aim of this study was to investigate the frequencies of CYP2C19*1, CYP2C19*2 and CYP2C19*3 alleles and CYP2C19 genotypes among Mazandaranani ethnic group among Iranian Population.

Materials and Methods: The study was conducted on 103 unrelated healthy volunteers. DNA was extracted from leukocytes and analyzed by the PCR-RFLP protocol. The PCR product was digested with restriction enzymes (SmaI and BamH1) and then separated electrophoretically using polyacrylamide gel.

Results: Of the tested alleles, CYP2C19*1, and CYP2C19*2, but not CYP2C19*3, were detected. The frequencies for CYP2C19 alleles *1, *2, and *3 were 91%, 9.0%, and 0.0%, respectively. CYP2C19 genotypes *1/*1, *1/*2, *1/*3, *2/*2, *2/*3 and *3/*3 frequencies were 84%, 14%, 0.0%, 2.0%, and 0.0%, respectively.

Conclusion: The result of the present study shows that the two inactive alleles of CYP2C19 accounted for 9.0% of CYP2C19 alleles in our sample versus 8.8 - 40.1% reported in other populations. The studied alleles frequencies was significant difference between our sample and African and Eastern Asian populations.

Keywords: CYP2C19; Genotype; Alleles; Mazandaran; Iranian
CYP2C19*1, CYP2C19*2, and CYP2C19*3 alleles and CYP2C19 genotypes among Mazandarani ethnic group of Iranian Population.

Materials and Methods

Subjects
One hundred and three unrelated healthy volunteers of Mazandarani origin residing in Mazandaran, province in the north of Iran, were enrolled in the study. The study protocol was approved by the Research Ethics Committee of Mazandaran University of Medical Sciences. Written consent forms were given from all the subjects.

Chemicals and drugs
Magnesium chloride, ethylenediaminetetraacetic acid, Tris–hydrochloric acid, and sodium chloride were purchased from Merck Chemical Company. Restriction enzymes and primers were prepared by Fermentas. Ultra-pure water was obtained using a Milli-Q water purification system.

Determination of CYP2C19 genotype - Genomic DNA extraction and PCR amplification
A 10 milliliters venous blood was obtained from each subject and transferred into sterile plastic tubes containing Na-EDTA and stored at -25 °C until to be processed. Lymphocytic genomic DNA was isolated according to previously published method (18). The DNA samples were stored at 4 °C. Allele-specific polymerase chain reaction was carried out to detect the CYP2C19*2, CYP2C19*3 alleles. The method of De Morais et al. (6, 19) was used to detect the CYP2C19*2 and for CYP2C19*3, respectively. Briefly, a solution of 0.5 μl of 100 ng/μl genomic DNA was pipetted into 0.2 ml thin-walled PCR tubes. A master mix was prepared according to the number of samples to be genotyped. This comprised (per tube) 1 μl of 20 μM of each of the primers in Table 1, 0.2 μl Taq® DNA polymerase, 0.7 μl of sterile water and 46.5μl of ‘Reddy mix’ (75 mM Tris-HCl pH 8.3, 1.5 mM MgCl2, 0.2 mM each of dATP, dCTP, dGTP and dTTP).

DNA samples were initially denatured at 94 °C for 1 minute. DNA amplification was achieved by 35 cycles of denaturation (95 °C, 60 sec), annealing for 60 sec and extension (72 °C, 60 sec). Then, the samples were subjected to a final extension step in 72 °C for 5 min. Finally, a 169 bp, and 329 bp, PCR fragment were achieved for CYP2C19*2, CYP2C19*3 respectively. A 10 μl of aliquot of each PCR product was run on a 10% polyacrylamide gel to check for positive amplification.

Restriction of amplified samples
Restricted enzyme digestion was carried out as recommended by the manufacture.

Table 1. Sequences and Orientation of Primers Used in Polymerase Chain Reactions.

<table>
<thead>
<tr>
<th>Alleles</th>
<th>Primers sequence</th>
<th>Orientation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2C19*2</td>
<td>5'-AATTACACACAGAGCTTGCG-3' F</td>
<td>(19)</td>
<td></td>
</tr>
<tr>
<td>CYP2C19*3</td>
<td>5'-TATTCATTCTTCAAAGAGCA-3' R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2C19*3</td>
<td>5'-TATTATATCTGTAAACTA-3' F</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>CYP2C19*3</td>
<td>5'-ACTTCAGGCGTGTGCAATA-3' R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

f = forward primer, r = reverse primer

10 μl of each CYP2C19*2, and CYP2C19*3 sample were digested using a mastermix of each enzyme (30 μl restriction enzyme + 200 μl buffer, aliquot 50 μl) according to the manufacturer. A 2.3μl aliquot of each Smal and BamH1 mastermix was added to 10 μl of PCR product for each CYP2C19*2 and CYP2C19*3 samples, respectively. The reaction tubes were incubated for overtight at 37 °C prior to analysis on a 10% polyacrylamide gel. The gel was electrophoresed for 40 min at 200 volts in 1XTBE buffer and stained by 1μg/ml ethidium bromide.

Results

One hundred and three subjects were genotyped. Examples of digestion reactions for detection of CYP2C19*2, and CYP2C19*3 alleles are shown in Figure 1.

Figure 1. Gel pictures after polymerase chain reaction–restriction fragment length polymorphism. A) CYP2C19*2; Lanes 1,100bp DNA marker, lane 2 heterozygous for *2, lane 3 to 4, wild-type individuals. B) CYP2C19*3; lanes 1 to 8, wild-type individuals, with 2 bands, 96 and 233 bp after 329 bp PCR product digestion with BamH1 restriction enzyme. Lane 9, 100bp DNA marker.

Of the alleles tested, CYP2C19*1, and CYP2C19*2, but not CYP2C19*3, were detected. The frequencies of the CYP2C19*1, and CYP2C19*2 alleles as well the genotype frequencies in the Mazandarani population are summarized in Table 2.

The frequency of polymorphic CYP2C19*2 allele was 9% in our population. Whereas 84% of patients were extensive metabolizer (EM) (all homozygous for the CYP2C19*1 allele, (CYP2C19*1/*1), 14% of subjects had a heterozygous intermediate metabolizer (IM) genotype (CYP2C19*1/*2). In 2% of subjects, a homozygous (CYP2C9*2/*2) PMs genotype was identified.
The frequency of CYP2C19*3 found in Mazandaran ethnic group in this study was (0%) similar to those showed in Caucasian, Africans, and also previous reports from a random sample of Iranians (Table 3). By contrast, the CYP2C19*3 alleles occur at a relatively higher frequencies in the East Asian countries (8, 9, 20, 25) (Table3). While CYP2C19*3 alleles is absent among different populations with Caucasian background, Europeans, Canadians-Australians, European (5, 8, 9, 23, 33, 34), African and African-American populations (7, 9, 26).

The frequency of poor metabolizers of CYP2C19 found in the present study (2%) was comparable to Caucasian populations (2-5%) (8, 10, 11). Dissimilarity CYP2C19 PM frequency is higher in Africans (4-8%) (11, 12) and in Orientals (11-23%) (11, 13-15). In conclusion, the tested allelic variants of CYP2C19 existed in the Mazandaran ethnic group with frequencies are comparable to Caucasian populations with some differences among East Asians and Africans. It is hoped that our results will aid in understanding the ethnic diversity of the Iranian population, and offer a preliminary basis for more rational use of drugs that are substrates for CYP2C19 in this population.

Acknowledgements

This study has been supported by a grant from the research council of Mazandaran University of Medical Sciences.

Conflict of interest: None declared.
References

